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1. Introduction /5*

The plan to prepare this paper evolved from a paper presented at the
Pioneer 6 Symposium in Washington [Wolfe et al., 1966], and a paper presented
at the Inter-Union Symposium on Solar-Terrestrial Physics in Belgrade in 1966
[Hundhausen et al., 1966]. These papers reported on observations of solar wind
plasma by the Pioneer 6 space probes and by the satellites of the Vela 3 series.
One important result of these experiments was the observation that the distribu-
tion functions of the solar wind ions, primarily protons, are anisotropic.
The Vela 3 observations yielded data for Tmax/Tmean ranging from 1.0 to more than
2.5, with a frequency maximum near l.4. The significance of the temperature in
this ratio will become evident immediately if we consider the definition which
states that the temperature in a certain direction is determined by the variance
of the velocities of all the particles moving in this direction in the reference
system of mean particle velocity. The Pioneer measurements yielded even greater
values of anisotropy. Moreover, it was observed that the direction of maximum
temperature agrees with the direction of the magnetic field [Hundhausen et al.,
1967]. More recent measurements made with the aid of the Vela 4 satellites have
shown that the electrons, too, show some anisotropy, although to a lesser degree
[Montgomery et al., 1968]. However, according to personal information received
from J. Wolfe, these results indicating electron anisotropy must be considered
with some degree of caution because of the experimental difficuities involved in
their acquisition. Additional information on measured parameters and solar wind
magnitudes close to the earth's orbit that were computed from them, is presented
in Tables 1 and 2. Here it applies that

5 12 (P + P)
0 - 6 magnetic field pressure

-
S

where PH and P, represent the parallel and the vertical component of total pres- /6
sure. Parker's solar wind theory was used to compute the curves plotted in

Figure 1. The solid curves were based on a stipulated corona temperature of

106°K =T = and a stipulated polytropic index of ¢ = 1, that is, a

. = T
ion electron
constant temperature. In addition, we find a dotted curve §O which corresponds

to T ~ no'l, that is, ¢ = 1.1, where n is the ion number density. The other

* Numbers in the margin indicate pagination in the foreign text.



magnitudes hardly deviate from the values for T = const, provided that the
distance of the sun is not too great. In the case where ¢ = 1.1, the corona
temperature was selected so that a value of T =T, = 106°K will result
electron ion
in proximity of the earth, Since Parker's theory requires only the sum of
T the temperatures of, for instance, Tion = 500,000°K and

T + T,

electron ion
T - 1. o 3 . e . .
electron 1.5 x 10 °K in the vicinity of earth will correspond to this corona
temperature. The curves provide a first impression of the mean profile of these

magnitudes that must be expected.

The solar wind plasma is the medium in which the perturbations propagate
which frequently produce magnetic storms on earth after solar flares. Since our
present-day concepts state that the propagation of these perturbations is
associated with the formation of shock waves, the observations of plasma aniso-
tropy which were mentioned above will immediately pose the question as to the
type of changes in the well-known shock waves in isotropic plasma that will
result from anisotropy. MHD shock waves of isotropic pressure were first treated
in theory by de Hoffmann and Teller [1950]. Later, it was primarily two problem
areas that became the subject of investigation. The first of these involved the
problem of the behavior of the characteristics of the plasma and of the magnetic
field behind the shock wave as a function of one shock wave intensity parameter
such as the shock wave velocity, referred to the nonperturbed medium, or as a
function of the change of the magnetic field across the shock wave, when the
corresponding magnitudes in the area in front of the shock wave are known, that is,
in the nonperturbed medium. Moreover, the problem as to the stability of the Z}O
shock waves has been investigated. The second problem area includes all the
questions as to the structure of the shock wave, that is, to the functions which
describe the spatial dependence of the physical magnitudes during the transition
from the area in front of the shock wave to the area behind the shock wave. The
treatment of this second problem area is much more difficult than that of the
first, and it is far from being resolved, while the first-named problem area can
be considered completed in its major aspects. The most important papers on the
interdependence of the plasma states on either side of the shock wave include
the paper by de Hoffmann and Teller [1950], a paper by Helfer [19531, List [19551,
and Bazer and Ericson [{1958]. The problem of the stability of the shock waves



waves has been solved by Russian authors. A summary is found in the paper by

Anderson [1963].

TABLE 1. COMPILATION OF SOME CHARACTERISTICS OF THE INTER- /7
PLANETARY MEDIUM, ACCORDING TO NESS [1967]. THESE
DATA ORIGINATED FROM OBSERVATIONS MADE IN THE
VICINITY OF THE EARTH ORBIT DURING THE PERIOD FROM
1962 THROUGH 1966,

Minimum Maximum Mean
Velocity, km/sec 280 900 400 to 500
Flux direction +10° -1.5°

against the solar radius vector (+ indi-
cates an originating direction west of the
sun's center)

Numerical ion density, cm_3 0.4 8o 5
Helium concentration in 0 15 A
percent of proton con-
centration
6

Proton temperature, °K 6 x 103 1 x 10 2 x 105
I i T .0 2 .

on anisotropy Tmax/ nean 1 5 1.4

Magnitude of the magnetic 0.25 Lo 6
field, y(ly = 10™20e)
in the ecliptic, with frequency maxima

near 135° or 315° against the sun's radius
vector

Magnetic field direction

Alfvén velocity, km/sec 30 150 60



TABLE 2. PLASMA DATA FOR SELECTED INTERVALS DURING /8
MARCH AND APRIL, 1967, ACCORDING TO
MONTGOMERY ET AL. [1968]

Electron temperature, °K 7 x 104 to 2 x 105°K
Electron anisotropy, 1.1 to 1.2
Tmax/Tmean

Ratio of electron

temperature to mean 1.5 to 5
proton temperature

Proton anisotropy 1.0 to 5 (1)
Velocity, km/sec Loo

Numerical proton density, L to 10
cm™

é‘o 0.9 to 1.5

with |Hl = 6 vy
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Figure 1. Some important solar wind parameters,
according to Parker's theory. The solid lines
correspond to the polytropic index o = 1, the
dotted lines to & = 1.1.




This paper does not propose to deal with the stability problem in con-
junction with shock waves in an anisotropic plasma. Only the relationships
existing between the magnitudes on either side of the shock wave shall be de-
rived. The denotations and the classification system of possible solutions
represent an expansion of the paper by Bazer and Ericson [1958] which includes
a very clearly stated classification system acquired exclusively via analytic

methods. Consequently, this paper will be structured as follows.

The step functions for the discontinuities under consideration shall be
derived in Chapter 2, starting out from the basic equations of kinetic plasma
theory stated by Dupree [1963]. The justification of the stipulations made for
this purpose shall be discussed, including comparison with other authors. More-
over, the H-theorem shall be used to introduce a generalized entropy condition,
and some consequences shall be discussed briefly. The step functions shall be
discussed and classified with respect to their dependence on several shock wave
parameters in Chapter 3. Finally, a summary of the results shall be provided,

discussing the possibilities for testing the theory.

2, Derivation of the Shock Relationships

2.1. Derivation of the Basic Equations

2.1.1. Klimontovich-Dupree Formulas

We shall start out by deriving the basic plasma equations. After several
intermediate steps these will yield the basis for the computation of the shock
wave jump functions in Section 2.5. First, we stipulate that we shall use the
electromagnetic dimensional system. Moreover, a nonrelativistic calculation

procedure shall be used.

Let us stipulate a completely ionized plasma consisting of M particles of
type u. Under certain initial conditions, let the trajectory of %he particle
numbered i in the hexadimensional space x, v, be described by the position
vector x ,i(t) and by the velocity vector_zu,i(t). In that case, we will obtain

the following for the particle densities in the hexadimensional space x, v,

according to Klimontovich [1957] and Dupree [1963]:

/10

/11

/12



Nﬂ. => §(x- &,u,if“) S(\_/——y},_,cu)) (1)

where y = 1, 2, 3 ... number of particle types. Integration over the entire

permissible space x, v will yield

SS Ny dxdy = Mp

where dx is the volume element in position space, and dv in velocity space.

Now the density Nu satisfies the equation

'a_{\'lf_‘__{._\_{g_Nfi 4._6.L‘_(E+¥X§>2_IYJ_‘=O (2a)
2t X e ~/ 2V

where e and ﬁj, successively, represent the charge and the mass of a particle of

type u. E_is the electrical field vector and E_the vector of magnetic induction

which in this case is always equal to the vector of magnetic field strength, Ef

The fields E_and E'satisfy the following equations:

Ea- 24
rot Z 5%
rot E"l"ﬂ'zer’(kf\/f‘dy + 1 ?_g
Id ¢t o4
(2b)
iv B oa 2
div E ‘/E'c};e,,J‘Nrdy
div E .0
c = velocity of light in a vacuum

This equation system describes the behavior of the stipulated plasma. As
a rule, its exact solution will be extremely difficult. However, in many cases,
this solution will not be required because the objective in most cases is to

compute merely statistical quantities from these solutions. Certain ensemble

A3



means are such quantities. An ensemble in statistical mechanics is represented

by a large number of similar systems., Similarity in this case means that all

systems consisting of E %J particles have the same Hamiltonian. The ensemble is
characterized at any point of time by the probability distribution of the 6% M /14
position and velocity coordinates and of the electromagnetic field componenis "

at any point in space. This probability density is defined so that it will be
compatible with the initial boundary conditions of the problem under consideration
[Tolman, 1950, Chapter III]. We shall return to this point in Sections 2.2. and

2.k,

We shall now determine an equation system for the ensemble means < > of N#
and E, as well as H. Using the definitions for the fluctuations 6N# = N# - <NL>,
8E = E - <E>, 8H = H - <H», and the definitions <NM> = fH for the single-particle
distribution function of particle type @, in addition to E =< E> and H =< H >,

we obtain the following by forming the ensemble mean of Eg. (2a):

? e 2 -
3 vv o S (Ervxn) B - 5a)

- %r<%£\_,&/r(sg+yx $H)>= Cp

Since the Maxwellian equations are linear in Nu, EJ and Eﬁ it is merely

necessary to replace NL by < NL> = fu and E_by < E_> = E, and so on, after

forming the ensemble mean:

2 H
E =z - =
rot E 3
2E
t H=4T3> € gy dy +4, 2=
" For e <t 2t (3p)
o e 2 15
div E = 4F ¢ Z" ekf]ekdy. L
div H = 0

As a rule, the equation system (3)will not be closed because of the term on
the right-hand side of (3a), so that it will not be adequate to compute fu,
E and H. In fact, the equation system (3) is merely the first element in an

infinite hierarchy of equations that are coupled to each other [Dupree, 1963].
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Therefore, the transition from the equation system (2) to the mentioned hierarchy
of equations will not usually yield any advantage. However, this hierarchy will
become valuable if it can be closed, for instance, through development by the
smallness parameter ¢ which is discontinued when a certain order is reached.
Disregarding the term on the right-hand side of (3a) will lead to the Vlasov

equation which, consequently, can be well distinguished from Eq. (2a).

We progress one step further when we derive the Balescu-Lenard equation
where we allow only for Coulombian forces, stipulate homogeneity of the medium,
and disregard correlations between three or more particles. Stipulating adiabatic
conditions we will then obtain an expression for - é%;'<'%§$9 sE > which is a
functional of fu. The second component is small of higher o;der. Under certain
prerequisites this correlation term will yield the Rosenbluth-MacDonald-Judd form
[1957] which can also be obtained as a development of Boltzmann's shock integral.
Henceforth, we shall use the general form of the term - %’i %(SN/‘ (§E +v x JH)>
which was designated Cu. We shall revert to the specific forms of the correlation
term, or with reservations, of the shock term CM only in some exceptional

instances.

2.1.2. Formation of Velocity Moments /16

The next step shall be to determine the continuity equation, the impulse
equation, and the energy equation from Egs. (3a) by forming the velocity moments

via the usual procedure. First, we shall define as follows:

3
-~
[

concentration of
particle type u

‘jfr"“—’

= = density
= m,n
p Ty
e (%)
=4 f d
Up = Y 4y
P fr K& mass ‘velocity

———r



L™ I(\_/- up) (v %) L dy

A { 2

re,u dy

pressure tensor

internal energy
per unit mass

2
2# - ?gﬁ_f(z__“w) (g_.yr)ﬁ‘d¥= thermal flux vector

Now, we integrate the Eq. (3a) over the velocity space, and using the

relationship
9 k]
(€+¥XH)%% =52U€+¥XH)ﬁ)
obtain:
2 _ 2mn
g 3¢ dy = 3
g b4 2 dy = 2 (M Uyl
Y 5x 5
S%“;%-\_;((wag) £,) dy = 0

—
e

9
,L§§<(S‘ +Y X SH) SN > dy = 0

and hence, the continuity equation

’a‘nt + g('n!: yg) = 0 (5)
2+ ? X
or
D 0p 2 (@pup
st SR =0
Multiplication of (3a) by x_mu and integration over the velocity space will
vield
24 o (mumn, u, )
mrg"x ¢ dv = 5 {:t_'&*#'“

10
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ol
ke

. = QP.KI . 9(772 N, WUy«
y) dy = 3_4“7 + - 7--5_XAL,,&~_. gl / 18

m [ v : :

eu [VK((E+yxﬂ)%—£ﬁ)d¥ == Cu My (€ + U x H),

and

2SN,
- e gvx (SE +v x §H) 3—2—/—‘>d\_/ = @,y (SE +SuuxiH), >

= Hh‘

This will result in the impulse equation for particle type u:

%(&t—u’&g * %71 (Prer # W )= @i (E+tux ), 4 Fpo e (6)

Here we used component writing with summation convention for some of

the vectors and tensors. The fluctuations 8 ns Sgﬁ etc. are obtained through

replacement of f by 6NH in the definition equation system 4. The vector

F represents a generalized friction force.

Finally, we must determine the energy equation. For this purpose we

2
multiply by mu v, and integrate over the velocity space:
2

m Py .2 3, (8
T#IY 3#“‘9‘1‘(“?:1—‘/‘)* *“3( tfl;)

N P] z A
! g\‘/z(!' 5%) v =35 (u (Fefr + 6o p) + 9 + Y Py) / 19

11



(e 28) v dy =~ (W E)mpen

- e S((sg +ux SHRENS iy = v e, Cmy (Suye SE)> =6

We obtain the following:

Pal

%@('J'T S E:‘ + er ?r)

(7)

+ 25 (e o (2up+ &)+ up By *3/‘)’ unpu(UpE)= Ep

X

Egs. 5, 6, 7, and 3b are used in the next section where they serve as the
basis for the derivation of the conservation equations for the shock wave

transition.

2.2. Derivation of the Conservation Equations égo

2.2.1. Introduction

The conservation equations for the shock wave transition shall be derived in
this sub-section. Although this paper is concerned primarily with shock waves,
we shall use these conservation equations for completeness in order to acquire
statements on contact discontinuities and rotational discontinuities as well.
A precise definition of these concepts shall be given later on. First we must
clarify some problems with respect to the shock wave model under consideration.
Shock waves, rotational discontinuities, and contact discontinuities arising
in problems of gas dynamics, magnetohydrodynamics, and plasma dynamics represent
areas of extremely great spatial gradients. Let Ls be the thickness of one
shock wave transition and L the characteristic length for the remainder of the
space: in that case, it will apply frequently that Ls € L. In conjunction
with the further condition that the curvature of the shock front be < l/Ls,
we derive from this circumstance the justification for treating the investigation
of the structure and of other characteristics of shock waves as a one-dimensional
problemwhere only a segment is taken into consideration. Consequently, we ailow

only for the spatial variations located perpendicularly to the shock front.

12
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Moreover, we assume the existence of a reference system Bs and, at rest within
it, coordinate system Ks within which the shock wave is stationary. In the co-
ordinate system KS so defined the shock wave represents the area where the transi-
tion takes place from the medium on the one side of the shock front to the

medium on the other side of the shock front. Beyond this area all the gra-

dients will disappear in this model.

The one-dimensional configuration described above can be realized exactly
in the classical case of shock waves in gas dynamics, but also in the case of
magnetohydrodynamic shock waves where particle collisions are the predominant
effect. We simply consider the uniform motion into the homogeneous propagation
medium of a suitable selected, infinitely extended piston. In that case there /21
will be thermodynamic equilibrium on both sides at an adequate distance from

the shock front, and all three gradients will disappear.

However, in our case we are.dealing with shock waves that propagate in a
generally anisotropic plasma. Such a plasma will not be in thermodynamic equi-
librium, and it will not be possible to satisfy the stipulation 2 = %:,}3—2:0
and gizlo at some distance from the shock front. Shocks and plasma instabili-
ties will tend to establish isotropy of the plasma. Anisotropy-producing

phenomena can counteract these processes.

Let us consider the solar wind as an example. We have a plasma that is
outflowing from the sun, expanding in the process, where the mass velocity varies
only little from a point of about 0.2 to 0.4 astronomical units (cf. Figure 1).
According to Parker's model of the interplanetary magnetic field [Parker, 1963],
the strength of the magnetic field |E| initially decreases at a rate of l/rz,
and at the rate of 1/r at greater distance from the sun. If there were no
collisions and instabilities the temperature in the direction parallel to the
magnetic field would remain constant and the temperature perpendicular to the
magnetic field would decrease in proportion to 'El with increasing distance from
the sun, in accordance with the conservation of the first adiabatic invariant
[Parker, 1963]. In reality, however, this process is opposed by collisions and
instabilities which limit the anisotropy. Here the inhomogeneity of the medium
is required to generate and maintain the anisotropy. This inhomogeneity of the

medium can be expressed by a characteristic length L= 1 astronomical unit of

13




the solar wind, which is much greater than the length scale Ls of a shock wave

which shall be discussed later on. Although this inhomogeneity is important

as such, we can disregard it provided that we also disregard the anisotropy- 4_%%_
destroying processes in the non-perturbed solar wind as being of a higher order.
More exactly speaking, Scarf et al. [1967] stated that these are instable, low-
frequency "whistler" waves whose amplitude will not involve any significant

perturbation of the physical magnitudes of solar wind.

We deduce from this brief discussion that shock waves in an anisotropic
plasma in general are collsion-free shock waves, that is shock waves where

simple Coulombian two-body collisions play a subordinate role. For these

Rear of shock ' Front of shock
wave with wave with
f1L8.Y. 4. Po.Fo.Yo.Hp-
Ho
X
| %
0 n
Ly —- V, 20

Sﬂ;:k wave ar;;\s

Figure 2. Sketch to orient the coordinate system Ko
within the reference system By and to es-
tablish some frequently used denotations.

types of shock waves the assumption of a coordinate system Ké with %} = O for
every point will be #oo restrictive, since non-steady state processes play an
important role in considerations with respect to structure of these phenomena.
We shall discuss this problem in some more detail later on. Here we shall make ég3

the much less restrictive gssumption that a reference system B, exists,

14
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with a coordinate system KO at rest within it, as shown in Figure 2, where it
applies outside an adequately wide interval that (O, L)) %yzz §y= %;:

and §%= 0 and where, moreover, we can assume the validity of Vlasov's
equation. The statistical characteristics of the turbulence which must be ex-
pected within (O, Ls) should not be dependent on y, z, and t. Up to this point

we have not made a statement as to the statistical ensemble over which the mean

is taken. This question is important with respect to a comparison with observa-
tions. We can use the statements just made in order to define an ensemble €.

Any realization of our problem, expressed by the functions N@ (x, v, t) and E(x, t),

as well as Eﬂgﬁ t), shall belong to the ensemble &, provided that it satisfies

the following conditions.

let a fictitious plasma analyzer located in the half-space x > Lg’ that is
on the front side of the shock wave, measure the same particle flux energy
spectrum within a certain boundary about the spectrum resulting from the given
fu, for any particle type, for any orientation of the normal of the inlet aperture
located at any point, and for any initial point of time of the measuring cycle.
Let the width of the boundary about the value in question decrease with increasing
measuring time t, in accordance with the increasing statistical accuracy. In
other words, as the measuring time increases, the measured distribution functions
should be grouped ever more closely about the given distribution function
which in the case of x > Ls is not dependent on x, y, 2z, and t. Moreover, it is
advantageous to suppose that the number of energy levels of the fictitious plasma
analyzer increases with increasing measuring time Z so that the accuracy of the
mean of the measured distribution function increases with increasing ;. In addition,
let the mean magnetic field vector which is measured by a fictitious magneto-
meter at any location where x > Lg and for any position of the time interval é?é

(t, t + T) converge on the given vector Hy as t increases.

Second, homogeneity and steady state shall exist in the same sense behind

the shock wave where x < O (cf. Figure 2). However, here the distribution

functions fu and Ei shall not be prescribed.

Third, let the fluctuations of the ensemble € outside of (O, Ls) be so small

that they cannot cause changes of fM whose length is greater than 2 L and

15



their contributions to pressure, energy flux and energy density are so small

that they can be disregarded. All of these conditions should apply only to terms

up to order lb/L° Since any realization of the shock wave problem which satis-
fies the conditions explained above will be part of &, we can see immediately
that the ensemble means of ensemble £ cannot be dependent on y, z, and t. Any
realization which is part of € can be used to construct a new permissible
realization by means of random displacement in the y and z direction or along

the time axis.

The deviations from the ensemble means, that is, fluctuations of the ensemble

€, incorporate all the time variations and spatial variations in the y and z
directions such as, for instance, standing waves, turbulence, and the like, and
especially those fluctuations that result from the discrete character of matter.
The latter fluctuation component can be separated from the other components by
using another ensemble 31 which is a genuine fraction of ensemble € and is so
defined that the fluctuations incorporate as few variations with t, y, and z as
possible and that the ensemble means still represent smooth functions. Here
the fluctuations include primarily the contributions of the discrete character
of matter. The ensemble means depend not only on x but usually also on y, z,

and t.

Since the statistical characteristics of the realization of the spock wave
transition do not depend on y, z, and t, it applies that Q?REC—E?;—Qfg}_ =
< NFJE/£¥>€ where the crossbar indicates that a mean is taken over y, z, and t.
Outside of (O, Ls) it applies, of course, that fx, ¢, = f/u/ ¢ <Eh:>g‘ = <E>€
and (g>g;:< E>€ . The physical magnitudes used below are based on ensemble

means of 51, unless a deviation from this stipulation is expressly stated.

2.2.2. Taking the Means and Integrating Over
the Bagic Equations

The conservation equations for the shock wave transition or simply the shock

wave relationships are now obtained with the aid of Egqs. (3b) and (5), (6), and

(7). Some additional denotations are required for this purpose:
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total mass density

p =2 ,
< Fr
I
U =52 pul -
P FrEp "  total mass velocity
(8)
‘-E = % El" = total pressure tensor
‘ 3 = % if* =  total thermal flux vector
A A
pe= Z Cu Pp . internal energy per unit of volume

/26
2
Tl;z= o (He Hp + EKC—EI‘) ”#(ﬁ/ﬁ' -%) Sce

= Maxwellian stress tensor

n =y My € . charge density
F
1= % Cp Ty Up = flux density
|
S = ir (é X H) - Poynting vector

In any desired reference system we define

U, = U front side
U, = U rear

17




The following definitions apply in the specific reference system Bg:

-V

1=V4

NI

Moreover, in order to characterize any desired point outside the shock

wave area within the system K,, we introduce X, and X where x6> Ls and X, < 0.

We integrate the Eq. (5) from + *) through x over x, and take the mean

over

that

y, z and t.
X,

I %{? dx = 0

[ 27

Xc
- .
) (9)
S%é yu )dx=0
x'
X,

yl

o —

>, T
2( u ,x) _
g_;aﬁ“_x_ﬂ_# x= D0 Upx.o = Prux Upuxr == p, Uy ]

Here we exploited the fact that it applies outside the shock wave area S

2-0 and 2 =0 2o
2t 2y .

define [A] = A, - A .

1 o

and that b= pu, and so on. Moreover, we

Now, what is the interrelationship existing outside the area S between

the velocity vectors of the different particle types? Measurements in solar

wind [Hundhausen et al. 1967; Neugebauer and Snyder, 19661 have shown that

Uz EH applies outside of S.

It follows for a two-component plasma with p =1

and 2 outside of S, due to the absence of any spatial and time derivatives, that

and
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§= emn, + emn, =0 /28
and

}'=e"n( Uy +Eg My Uy =0

and hence, strictly speaking, that

U, = U,

However, the solar wind plasma represents a two-component plasma of electrons
and protons only in approximation. The next frequently occurring ions are
H:+-ions with a mean of no/np = 0,04, although this value can rise as high as
0.15 (cf. Table ). The cited data originate from measurements performed by
the satellites of the Vela series [Hundhausen, Asbridge, Bame, Gilbert, and Strong,

1967; Ness, 19671.

In the case of a general multicomponent plasma, we can argue as follows.
It follows from Eq. (6) for an homogeneous, steady-state Vlasov plasma where

C = 0, and consequently, where F = O, that
K ™
E+ U, xH=0 (10a)

This means that the component of Eﬁ which is oriented perpendicularly with respect to

H is equal to the drift velocity uy=E x H/H2 for all

Upesr = up - EXH (10b)

o2

Consequently, in a steady-state, homogeneous Vlasov plasma, the velocity
differences can occur only in the direction of the magnetic field. They are
further limited by the occurrence of instabilities of the dual-flux instability
type. These are encountered when exceeding critical velocity differences between
distributions that are displaced with respect to each other in the v space. 1In 429
addition, j = O and ﬁ = O must be satisfied in this case. The instable waves
can be purely electrostatic or ion acoustical waves, but also electromagnetic

) L4 I3
waves such as '"whistler waves'" or Alfven waves. However, important processes

occur even below the critical velocity difference.

For illustration, let us consider a plasma whose magnetic field can be dis-
regarded. The ion acoustical waves encountered in the plasma are damped at

velocity differences below the stability limit, but their damping is reduced

19



as we approach the critical velocity difference. This will result in an increase
of the fluctuations $E and hence of the correlation terms C which in this case
can be described by the Balescu-lenard equation. The fluctiations cause the
destruction of anisotropy and of the velocity differences, since the terminal
state described by the Balescu-lenard equation is a state of thermodynamic
equilibrium [Montgomery and Tidman, 1964, Section 7.2]. Therefore, due to the
requirement that L > Ls the plasma must have a sufficient distance from the
stability 1imit. In other words, excessive proximity to the stability limit and
maintaining the anisotropy of the plasma are incompatibilities. However, a

paper by Joyce et al., [1967] has shown that the effect of the fluctuations §E
will decrease rapidly when we move away from the stability 1limit in the direction
of greater stability. Here it is insignificant for our consideration that Joyce

et al. [1967] assumed a plasma in flux.

From now on we shall stipulate that, outside of S, all Eﬂ are equal to

Euz V. 1In that case, it follows from Eq. (9) that
CeVl=0 /30

or that
90\/".0 = 91\/’!1,1 = M
(11)

where Vn =n « V while M represents the mass flow through the area S.

Now we determine the impulse conservation equation. For this purpose, we
summate the Eqs. (6) for all particle types and make use of the definitions 8.

We find that

%(puk) +?%<1(PK‘+ % Pp Uk Ups2).

Y

Moreover, it applies
/'/ = 73 1
% g*nr(§4-gfx._) 7E + 4 x

Iz

and consequently, that

A / - 9 T« 7 9 S«
(25+ 1)( H)K“_'- QXE( _27 3¢

Subsequently, integration over x from xl through xo and taking the mean over éjl

20



y, z, and t, together with Hn =n = Hwill yield
X,

[MY + Pom o+ Hon— b HH]= (275 &

4

I3

Because of V/c € 1 we disregard the contributions of the electrical field

to the Maxwellian stress tensor, using Eq. (10a). Now we must determine the

integral jxﬁ- 7. - It applies that
/L

% Fu odx = ; Sd\_/\_/C/“ dx

xs_/ﬁx
L)
K"".‘X

The integral will not yield a quantity outside of area S, because of C“ = 0.

As a rule, C will differ from zero when inside the area S. In the case of shock

waves that are controlled by collisions we can use Boltzmann's collision integral

for € which due to the conservation of the impulse will yield
C v =0
%gx . M dy

upon collision. In our case, we are concerned with shock waves where collective
interactions are important and where simple Coulombian collisions can be dis-

regarded. Now we must also allow interactions of greater range. In that case,

it will usually no longer apply that

L2

but only that

%m/‘f\_/ C/‘ dv dx = 0

X e %

which, however, is adequate for our purposes. Thus, we obtain:
T
H '
+ n n— L = (12)
(MY + P-m v Zn— 5 HH =0
Next, we consider Eq. (7), and as a first step, summate over all [T

(Z 30 u _‘“ +% )
'ax(zuri’r(%k‘ +&)+ 3 uy-£r+i>—j-[§ =% £s

In accordance with the energy equation of electrodynamics, we obtain the
following for j « E:

21
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{ 2 { 2 .
§ 6+ 2(Hal v+ t) + dv S =

Consequently, the usual integration over x and taking the mean will 433
yield: X,
[M(% +e)+V-Pn+(g+S)m gZE dx
Using Eq. (10a) we obtain for the area outside S:

and in the system KO:

and consequently: [M (_7,:\124_ é) . L/EYI g+ \4 ﬁz 3 H{ (H_)]:

h & 4
X,
= § % £ dx
or /34
] 2 A t
[M(+V + e ”f)Jqu\/(f ﬁfi)-n—%(ﬂ‘y)}
Xo
= KE:E- d x
X, ¥ F
where 1 is the standard tensor.
= X,

Now after appropriate modification, the same arguments apply to S > 5,, dx
x. P

that were used for the impulse conservation equation. Hence,
XH
g S E dx=0
and X, ,A
1 oA 4 H2 (13)
! H al
[M(z Y+ & rqzg) PV (R4 1)m + G g (HY)] -0

Integration of the equation div H = O over x, and taking the mean over y,

z, and t will yield:
(14)

(u,] - o
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Now we apply the integrating and mean-taking procedure to the equation

H
rot E = - %}?
and obtain:
[E+w]=0
where__@tr is that part of E which is located in the plane y, z. The equation

LEtr] = 0 is equivalent to the relationship [n x E] = O. Subsequently,
Eq. (10a) will yield [n x(V x H) = O.

[VH.=HW =0 (15)

The x-component of this vector equation is satisfied identically.

Moreover, the following statement is useful for the subsequent algebra to
determine the step functions. We defined the reference system Bo in such a way
that the area S has a mean velocity component of zero with respect to BO in the
x direction (cf. Figure 2). We still lack a criterion to define the state of
motion of Bo in the y and z directions. But we are now able to state such a
criterion. It is seen from Eq. (15) that in the case of Hn £ 0, that is,

60£ 90°, a reference system can be achieved, by a translation in the y and =z

directions, where it applies on either side of S that Etr = 0, or that

VH, = B Vn

We shall give this system the final denotation BO.

2.2.3. Treatment of the Pressure Tensor

So far we failed to make a statement on the tensor P = ¥P . However, it
= u:
follows from C = O outside of area S as well as from §%=0, Z%=0, g; =0  and

a/aZ = O that

CEIN
(E_+1x§)~ 2V = 0 for all p.

Moreover, with Eq. (10a), we obtain

(v ~updx B) - %ij -0

This will yield the general form of fu according to our model

{p. = £F (vul (!" 7:‘:»)1)

23
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with v- H
Ny =
L] (16)

It applies specifically in the reference system BO that fu =1 (0” , z?),
because of_gD = O. Consequently, the distribution functions of all the particles
have axial symmetry with respect to the magnetic field [Chew, Goldberger, Low,
1956]. According to the definition Egs. (4) and (8) this means that the pressure
tensor has a diagonal shape in a cartesian coordinate system KO as shown in

Figure 3 which has the coordinates X, y, and z. Since y is located in the

direction of the magnetic field, the following applies in RO:

P, 0 0
- ¢ B O
(¢} o] 5 -

<
A S

Ry
|

=

X

19

Figure 3. Sketch to define the primary axis
coordinate system Kb of the pressure tensor E

with respect to the shock wave coordinate

system Kb.
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Now we calculate the tensor components in the system x, y, z.

system:

with

In that case we

v

For this
purpose we require the unit vectors in the x, y and z directions in the ;; ;} z
(sin ©, - cos 9, 0)§' 7 2
(cos ©, sin 6, 0)§, 3, Z
=(0,0,1)3 5 37
[38
Fyx ny Pxa
P
Pyx Pyy yz
P - -
Pox Fuy 2% X, ¥y Z
X P 20
P, sin © + P, cos
X +.P+-3=12(Py~-P;)sin26
o]
P, 0052 9 + Py sin2 8]
Q
Py

Moreover, we obtain with Egs.

Finally, it follows from Eq.

must be located parallel or antiparallel to H:

2:

&:

2

obtain:

P o=
ggé‘{_=
Py -
Pz =
& ‘P i =
Pyz =
2 'E .2 =
P, sin® 6

(17a)
+ Py cos® 6 1/2(P, - Py )sin 2 6 0
1/2(P, - P, )sin 2 © P, cos® © + Pysin® & O
O O x'yYZ
(L) and (8):
€0 =P+ 1/27P
? ! (17b)
(16) that the thermal flux vector g
YxH=0
(17¢)
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Apart from 6, the pressure tensor is characterized by P, and P,. 139

Having derived the Eqs. (11), (12), (13), (14), (15), and (17), we must now
ask ourselves whether we have an adequate number of equations to achieve the ob-
jective of this investigation. This objective is a collection of formulas which

can be used to compute the characteristic magnitudes for side 1 of S when these

[E=<}

magnitudes are known for side zero. Each side is characterized by $rPuy Py Uy
and g. Because of Eq. (17¢), q is defined by a scalar magnitude. Consequently,
we have 1 + 1 +1 + 3 + 3 + 1 = 10 unknown quantities. However, the Egqs. (11),
(12), (13), (14), (15), and (17) yield only 1 + 3 + 1 + 1 + 2 = 8 defining
equations, Consequently, we have two more unknown guantities than we have
equations. It is seen immediately that this is due, on the one hand, to the
stipulated anisotropy of the plasma and to the possible presence of a thermal flux
vector g in an homogeneous, steady-state Vlasov plasma. We shall attempt to find

two meaningful additional relationships in the next section.

Finally, it shall be noted at the end of this section that we can of course
replace the quantity of the ten magnitudes f» Fy » PL, V¥, H and g on side O
which are considered known, by some other quantity of ten independent magnitudes.
In many cases this will be the more practical procedure.

2.3. Theoretical Models for Noncollision Shock

Waves, and Observation Results with Respect
to Shock Wave Structure

The following section shall first present a brief description of the most
important models for the structure of noncollision shock waves. Subsequently,
the observation results with respect to shock wave structures, acquired from space
probes and satellites, shall be compiled. These data will yield an indication as
to the two required additional stipulations.

2.3.1. Review of Some Models of Shock Waves
in a Collisionless Plasma

One important magnitude that affects the characteristics of a shock wave is
the ratio of gas pressure to magnetic pressure ahead of the shock front. Since
the pressure tensor is not a spherical tensor, we shall initially use the arith-

metic mean of RLO and F as a measure for the plasma pressure, which is

‘o
2
1/2(P, + P, ). The ratio to magnetic pressure will then be (B, + P )/EO .
o7 Mo o T o'y

However, for the purpose of the following, we shall use the magnitude
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pe—____1

g‘ = £ _»‘P.L_o _j'_.fllj.

g He/ur (18)

which already occurred in Table 2 and in Figure 1 and which in the ecase of
BH} = Elo turns into the expression so of Bazer and Ericson [1958] which then

represents the square of the ratio of sonic velocity to Alfvéen velocity, VA’

The models of noncollision shock waves can be classified into two groups
according to the value of %D; models where §6> 1 and models where %jé 1. In
this case we usually stipulate that the particle distributions fu are isotropic
Maxwellian distributions. As a rule they are completely disregarded in the case
where §O< 1. However, the models are easily expanded toward anisotropic dis- [/ L1
tributions if we exclude only those fM which cause instabilities with ex-

cessively rapid growth periods.

The group where §o>>l includes theories proposed by Parker [1959], Moiseev
and Sagdeev [1963], Tidman [1967 a, b], Colgate and Hartman [1967], and Kennel
and Sagdeev [1967]. Parker [1959] considered two plasma streams without magnetic
field that are subject to mutual interaction as a result of dual stream instability.
Where the velocity difference was greater than the thermal electron velocity

1/2
he obtained a thickness of the shock wave transition of about k:(mi/me) / . Lb
where LD represents the Debye length. The thickness of the transition decreases

with decreasing velocity differences, to about ~ LD.

The theory of Moiseev and Sagdeev [1963] treats shock waves where 90 = 0°
and where Alfvén turbulence is caused as a result of anisotropy within the

shock wave.

Tidman [1967 a, b] initially treated a shock wave without magnetic field.

The velocity of the shock wave V is stipulated to be considerably smaller

1

than V = (uT m )1/2 A ;ggt Smith equation is written for the ion
the,0 ~ e,C/e . - ed o °
distribution function where the distribution function fion is assumed to be
a weighted mean of the distribution functions in front of and behind the shock
front within the area S. On the front side it applies that Tel/T'on' The
i

quasilinear theory with ion acoustical waves is used in the forward part of the

shock wave. A rough estimate made on the basis of the spatial growth rate will

a7
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vield a shock wave thickness of some V W . where u . is the ion plasma cir-
n,0 "pi,0 pi,0

cular frequency on the front side. The magnetic field is taken into account sub-

sequently, and a thickness of Lng 2V’the l/u)ce 0 is obtained for the magnetic
9 9

field transition, where uée o is the electron gyro circular frequency that
)
corresponds to the transverse component of the magnetic field. Only one pre- [#2

requisite is stated for disregarding the magnetic field when studying the plasma
transition. This model can be used without major modifications but in any event
only for §o > 1. The same shock wave model is treated in more detail with

respect to magnetic field structure in two other papers [Tidman, 1967; Tidman and

Northrop, 1968]. Waves in front of and behind the shock front are discussed in

particular,

Colgate and Hartman [1967], using a computer model, considered the inter-
action between two plasma streams resulting from reflection of a plasma stream
against a wall. It is stipulated that the plasma streams in question are almost

cold where Tel/T = 2.7, and they are represented by positive and negative

ion
"plates." 1In other words, a one-dimensional calculation procedure is used. This
1/2
will yield a shock wave thickness of about V. _- 88(m,/m ) / /o, for the
n,oO i’ e pi,0

transition of the ion distribution function. The thermalization of the electrons

takes place at a faster rate.

Two other theoretical models for noncollision shock waves where 90 = 0° and
90° and where §0 > 1 were proposed by Kennel and Sagdeev [1967, a, b]l. Here, in
the case where 60 = 0, the 'fire-hose" instability will cause Alfvén turbulence
which is carried downstream for an extended distance because of weak damping.

The fading distance of Alfvén turbulence is much greater than the thickness of
the transition area for the velocities and pressure tensors of the ions and
electrons as well as the magnetic field. Magnetosonic waves are considered in
the case where 90 = 90°.

Let us now consider the case where §O € 1. This includes theories by
Parker {1958, 19611, Davis et al. [1958], Auer et al. [1961, 1962], Fishman et al,.
[1960]1, as well as Litvak [1960] and Camac et al., [1962], Rossow [1965, 1967],
some papers by members of the Courant Institute of New York [Gardner et al. 1958;

Morawetz, 1961 and 1962; Morton, 1964], and Sagdeev [1966].
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Parker [1958, 1961] considered shock waves where 90 = O, associated with the
generation of Alfvén waves by two plasma streams with_!b and._\_/'1 which penetrate

each other for a certain distance.

In the case of Davis et al. [1958], the shock wave under consideration with
60 = 90° propagates into a cold plasma, The transition area between the two sides
O and 1 includes a laminary, nonlinear wave train having a wavelength in the
order of 2HVQ (Ghﬁ er)i? « This wave train is bounded by collisions so that
the width of the transition area corresponds approximately to the mean free path

length.

Auer et al. [1961, 1962] used a one-dimensional computer model to investi-
gate a shock wave with 60 = 90° which was generated by energizing an electrical
field oriented vertically with respect to the magnetic field. In this case, the
plasma in front of the shock wave is cold and is represented by positive and
negative ''plates.!” In the case of Alfven Mach numbers Vn,O/VA,O = MA which are
sufficiently smaller than two, this will yield a transition area consisting of a
laminar wave train similar to that of Davis et al. [19581. In the case of
sufficiently great MA_values a disordered transition area is obtained whose width
is ::VA'a/ngo=0/h%qo-@%/meyV2=c/u¢go and whose start has a fine
structure of length scale c/u%e,o which decreases in strength and length scale

over time. 6.0 is the electron plasma circular frequency.
9

These calculations were expanded by Rossow [1965; 1967] to the case where
the stipulation n, ~ ne is dropped and where oblique shock waves are used. In

this case, n, is the numerical ion density and n, the numerical electron density.

Sagdeev [1966] considered shock waves with §O € 1 and 60 = 90°. The
currents that cause the change of the magnetic field lead to large velocity dif-
ferences, especially in the case of small densities, that will trigger electron

oscillations via dual current instability.

The papers from the Courant Institute which were mentioned before are con-
cerned with laminar structures similar to those of Davis et al., that is, wave
trains with ordered particle trajectories. These models resulted in objections
with respect to their stability. The magnetic field variations are caused by
currents of the type that, for instance, in the case of Sagdeev [1966], can

trigger instabilities of the dual current instability type.
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Probably the most satisfactory and progressive theory of collisionless
shock waves with §o € 1 is the theory advanced by Fishman et al. [1966], Litvak
[1960], and Camac et al. [1962] for shock waves with 60 = 90%, In this theory
a part of the ordered energy in front of the shock wave is transformed into
wave energy. These are waves having the '"whistler" type of wave form in the wave
length range from c/u%e =T, through c/u)pi =r.. These waves contribute to pres-
sure, energy density, and energy flux. Similar to phonons in a solid, they are
described as plasmons by a kinetic wave equation. These plasmons are generated
when a plasma performs work opposing the wave pressure. In the birth interval
of the plasmons, the magnitudes of density p, velocity u, magnetic field éJ and
so on will vary in order to assume their new values. The width of this tran-
sition area Lﬂ was estimated by the authors at B/Bwk, where k is a typical wave
vector of the above wave distribution, meaning that k amounts to some l/ri.
Bw is the ratio of wave pressure to magnetic field pressure. In the beginning
of the shock wave transition, the plasmon distribution in the k space is
characterized by two sharply defined maxima which are located symmetrically with
respect to the ky - O plane. The location of the maxima in the k space is deter-
mined by the fact that the frequency in the equilibrium plasma system assumes a
minimum at these points, under the secondary condition that the plasmons move
only in the y direction within the shock wave coordinate system. Upon propa-
gation in the negative x direction, the wave distribution will become continuously
broader and more symmetrical. Wave energy is no longer produced in the interval
behind the transition area, because of the absence of velocity gradients. Plas-
mon collisions under simultaneous symmetrization of the wave distribution will
produce waves of progressively increasing frequency which are finally lost as a
result of damping. The slow MHD waves which are also produced by collisions can
experience only higher-order collisiouns among each other., This will result in a
lesser degree of damping so that they finally predominate. At a greater dis-
tance even they will be lost due to damping. Finally, under x = O (cf. Figure 2)

all the wave energy has been transformed into thermal energy.

These models can be described qualitatively approximately as follows, using
Figures 2, &, and 5, if we disregard the laminar models which are subject to
strong objections because of the stability problem. The orderly energy of the

plasma on the front side of the shock wave is partly transformed into wave
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energy in an area whose width is LH' This area corresponds to the x-interval (LS-
L, - Lj, Lg - Lv)' This interval is preceded by the interval (Ls -L, Lb)

which is entered by the lesser part of the wave energy by means of propagation
against the direction of the flow; we call this the advance area., However, the
greater part of the wave energy enters the interval (O, LS - Lv - LH) via propa-
gation and convection. Here, the wave spectrum is modified during propagation in
the negative x-direction as a result of wave-wave interaction and particle-wave in-
teraction so that, naturally, the distribution functions of the particles will change
as well. Subsequently, the wave energy continues to decrease at the expense of
particle energy until it becomes so small at point x = O that it can be disregarded.
During this process, relatively great gradients of (lg - Lv - Lﬁ’ Ls - Lv) etc.

will be encountered in the interval p, u, and the lesser gradients in the interval
(o, LS - Lv - Lu). The strong wave spectrum develops in the interval

(Ls - L, - La L, - Lv) as a result of the inhomogeneity of the medium and/or of /46

k)
the peculiarities of the particle distributions in the velocity space.
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Figure 4. Explanation of lengths L, and Ly with the aid of five typical
magnetic field profiles recorded upon penetration of the earth' shock
wave, according to Heppner et al. [1967]. Plotted are intervals (Ls - L, -
Ly, Lg - L,) and one example for an interval (Lg - Ly, Lg), all of which
are contained in the interval (0, Lg) which, however is too large to be

represented.
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Now we shall establish some nomenclature once and for all: the transition
interval (Ls - L, =Ly Lo - Lv) shall simply be called the shock wave. The
interval (O, Ls - Lv - Lﬁ) shall be called wave region. The total interval

(o, Ls) shall be called the shock wave region, S.

What is the picture of the shock wave structure that is conveyed by the

observation data acquired from space probes and satellites?

2.3.2. Observed Data on Shock Wave Structure Acquired from Space Probes
and Satellites

Some observation data on the structure of the shock wave that is generated

in the flow about the earth's magnetosphere are already available, while very

little is known on the structure of shock waves propagating freely in solar wind.

/48

This is due primarily to the high time resolution required for such investigations

which so far could be achieved only in proximity of earth when investigating the
earth's shock wave. The most informative observations of the structure of the
earth's shock wave to date were acquired with the aid of the satellites 0GO - A
[Holzer et al., 1966; Smith et al., 1967; Heppner et al., 19671, Vela 2A and
2B, and specially Vela 3A and 3B [Argo et al., 1967; Greenstadt et al., 1968]
in addition to the space probes Mariner IV [Siscoe et al., 1967] and Pioneer 6
[Ness et al., 1966; Wolfe and McKibbin, 1968]. These are measurements of
particle distribution functions and especially magnetic field measurements.
When we compare these measurements with each other and with the theory we must
keep in mind that the density, velocity, and pressure tensor components of the
ions and electrons in solar wind as well as the magnetic field are subject to
fluctuations. Another difficulty is due to the fact that the measurements at
any point of time are taken at only one point in space. Consequently, spatial

and time fluctuations cannot be separated from the outset. Moreover, the

different positions must be taken into consideration when comparing the measure-

ments. Even in these measurements the time resolution of the plasma detectors

is not adequate.

The magnetic field structure as acquired from the measurements of 0GO - A
was investigated in detail by Heppner et al, [1967]1. Figure 20 of that paper
lists some typical observations made aboard this satellite of the magnitude of
the magnetic field as a function of time, presented for classification of the

majority of the observed shock waves. Figure 4 was plotted on the basis of
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this information. The steep rise on the front side of the shock front takes
place within about 50 to 100 km, which corresponds approximately to the ionic
Larmor radius at Alfvén velocity, and this in front of the shock wave (typically
at 70 km where n = 10 cm_3). The smoothed magnetic field profile consists of

a steep rise of the thickness mentioned above, and a relatively broad maximum,
Subsequently a new value is reached asymptotically. The first minimum indicated
behind the maximum in Figure 4 is seen more pronounced in several examples and
should be given more emphasis as part of the structure. The fact that the magnetic-
field profile remains constant in the shock wave over a period of several minutes,
even down to details, has been emphasized by Greenstadt et al. [1968]. A similar,
smoothed magnetic field profile was also measured by Pioneer 6. The magnetic field
measurements near the earth that are described there [Ness et al., 19661 are
remarkable insofar as they were acquired under very low Kp-values, O+ and Oo.
Consequently, we can assume that anly a small part of the variations are due to
irregularities in solar wind. The smoothed magnetic field profile measured by
Pioneer 6 started out with 13 vy in the outer transition region, dropped to about

9 v, rose to 18 vy, and finally dropped to the interplanetary value of 3 Y. This
magnetic field profile can be seen in the bottom curve of Figure 5. If we con-
sider the region which is characterized by large values of the variance o of a
magnetic field component over 30 s to be the shock wave region, the stated

value of Ls;¥ 2 R.e will result since the variances become small at a distance

of about 2 Re from the steep rise. However, we also note that the condition [/ 50
1§<§1,which was stipulated at the beginning of Para. 2.2.1. is not satisfied.
Consequently, LS can have a different value in the truly '"one-dimensional

case. Advance waves cannot be identified in this example. Therefore, Lv = 0.

The nonsteady processes mentioned above are superimposed on the smoothed
magnetic field profile. They are strongest in proximity of x =~ LS - ijz Lg.
Heppner et al. [1967] frequently observed wave trains extending over some periods
with frequencies between 0.5 and 1.5 Hz. Amplitudes of 4 v in one magnetic
field component were observed behind the start of the steep rise. These were
interpreted as being waves in the whistler mode in the wave length range
theoretically required by Fishman et al. [1960], Litvak {1960] and Camac

et al., [1962]. These waves are also encountered with a small amplitude as

advance waves in the plasma on the solar wind side of the steep rise, that
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is where Ls - LV < x < Ls in accordance with Figure 4. Moreover, waves of higher
frequencies f > 3 have been observed. Also, according to Siscoe et al. L19671,
based on the measurements of Mariner IV, the amplitudes of the nonsteady pro-
cesses increase in proximity of x = Ls - Lv. These authors discussed periods in
excess of several seconds and obtained relative maxima in the power spectra
during periods from 30 s to 60 s which were interpreted as being torsional os-

cillations oriented perpendicularly to the normal vector n.

In addition to the experiment by Heppner et al. [1967] which was described
above, the OGO - A satellite also had aboard an experiment to determine higher
frequency magnetic field variations in all three magnetic field components [Holzer
et al., 1966; Smith et al., 1967]. The useful part of the measured magnetic
field spectrum included the frequency range between 3 Hz and 300 Hz. Sqguared
spectra were acquired at time intervals of five minutes [Smith et al., 1967].
These reflected changes by several orders of magnitudes from one measuring inter~

val to the next. A mean taken over several spectra revealed a squared spectrum

of B(f) ~ 1 Y2 sz/f3 ranging between 3 Hz and 300 Hz. Extrapolation for 1 Hz /51

provided a variance component for all frequencies above 1 Hz which is o2 = 2 f

f B(f) df = 1 Yz. The contribution of high-frequency variations to magnetic field
energy is very small, if we consider that the background field is greater than

15 v. One five-minute interval which began in the outer transition region and
ended upon entry into the interplanetary plasma, yielded B(f) =~ 5 Yszz/fB. In
general, it was found again that the nonsteady magnetic fields increased in the
direction toward the shock wave. Frequently the varying magnetic fields are dis-
tributed simultaneously over all frequency ranges. The signals in the different
components are similar. More recent measured data [Olson et al., 1968; McLeod

et al., 1968] indicated continuous power spectra in the shock wave ranging all
the way up to 10 Hz. Noise strays were measured in the frequency range from 10
to 300 Hz, with magnetic field amplitudes from 0.0l y to 0.1 Y. Monochromatic
signals were measured frequently in the ''magneto-sheath'" between shock wave and
magnetopause in the frequency range from 14 Hz to 140 Hz; sometimes these sig-
nals reached amplitudes up to 1 Y. The spectral density is much smaller

on the solar wind side of the shock wave, However, advance waves are en-
countered again and again at a distance of several earth radii from the

shock wave. Since these advance waves do not contribute greatly to the
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energy density, the energy flux, and the pressure, they can be neglected

in the shock relationships. However, they can be significant to the shock wave
structure.

We can recognize in the data on magnetic field observations the qualitative
picture which is common to these theories. A steep rise of the magnetic field,
possibly preceded by advance waves, is followed by a broad region of nonsteady

magnetic fields whose behavior is subject to intensive change with respect to
time and space.

In the case of the plasma measurements the experiments in the satellites
of the Vela series [Argo et al., 1967; Greenstadt et al., 19681 and in Pioneer 6 /52
[Wolfe et al., 1968] must be emphasized. The measurements aboard Pioneer 6
conveyed the following picture: at some distance from the shock wave in the
region (O, L, - L, - L;) the plasma has a velocity |V| = 225 - 240 km/s, an ion
3, an electron temperature T, = L ox 105°K, and
a proton temperature of Tion;w 5.0 - 7.5 x 105°K. More exactly speaking, the

concentration n ~ 25 - 35 cm

ion distribution can be expressed by a Maxwellian distribution of the above
temperature and an additional high-energy tail oriented in a certain direction
[Wolfe et al., 1968]. The uncertainty in determining Tion results from the
difficulty involved in the separation of this high-energy tail during evaluation.
According to an evaluation of the measured spectra made by the author, Tion is
located closer to 7.5 x 105°K. The high-energy tail is relatively well developed
in the rear of the shock wave. Again the question arises as to the nature of

the effect of the inhomogeneity of the flow behind the shock wave on the behavior
of the distribution functions. During the approach to the magnetic field,
maximum of 18 v, n and Te increased, while 'j£| decreased. At the maximum, we
find that Tion is approximately unchanged, while Te1’¥ 7 x 105°K, ]X.'< 200 km/s,
and n ~~ 108 cm_s. Finally, in the solar wind the data were n ~ 11 cm_B,

[ ¥l ~ 280 kem/s, T ~ 2 x 10°°k, Ty~ Lx 10*°K and Tk 16*°K. The

index i refers to ions. The two last-named values must be considered to be quite

uncertain since they were located at the limit of the resolution of the plasma

analyzer.
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We shall now consider some additional plasma measurements. A remarkable
feature in conjunction with our search for an additonal stipulation for the
shock wave theory is the statement in [Wolfe et al., 1966] that the distribution
function of the ions in the '"magnetosheath" is almost isotropic. According
to Asbridge et al. [1966], the electrons in the transition region frequently

have almost isotropic distributions.

The paper by Greenstadt et. al., [1968] reported on the measurements made /53
by the plasma analyzers aboard Vela 3A in comparison to magnetic field measurements.
Since only the magnetic field component perpendicular to the spin axis is stated,and
since the plasma data are not provided in very favorable form, it is not possible
to draw many conclusions. It is merely seen that the ion streams are subject
to greater fluctuations than they are in solar wind. Argo et al., [1967] stated
the plasma parameters on both sides for several passes through the shock wave.
However, except for one instance the ion temperature stated was acquired by
taking a mean, and this of course does not permit any statement as to the
exact distribution functions or the pressure tensor. In the one case which
was investigated in greater detail the ion temperature acquired from measurements
just prior to entry into the solar wind plasma was 1 X 1O6 oK based on directional
distribution, and 5 X lO5 °K based on energy distribution. The measured points
in the spectra indicated a strong dispersion which was due to time variations.
Moreover, the fluxmaximum of the directional distribution is not substantiated by
measurements but was acquired through interpolation by means of an anisotropic
Maxwellian distribution. Therefore, these measurements are not very dependable.
Theoretically speaking, an anisotropic ion distribution in the transition region
(LS - Lv - Lﬁ’ L - Lv) would not be surprising. Even gas dynamic shock waves

show anisotropy in the corresponding transition area.

Another interesting observation is that positive ions are accelerated
in the earth's shock wave and are then scattered in the upstream direction
[Asbridge et al.,1968]. The numerical density of these ions (again primarily
consisting of protons) in most instances amounted to < 1 % of the numerical
denslity in the solar wind, while the mean particle energy was typically four

L34

amounting to 10 % of the data for the inflowing solar wind have been measured, too.

times as great as it was for the solar wind ions. However, numerical densities
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We have two possibilities for taking this ion contribution into con-
sideration. For one, it is possible that these ions move for an adequately
great distance LA along the interplanetary magnetic field in the direction of
the sun, where the helix angle distribution and energy distribution are more or
less retained. In that case we could allow for these ions by using them for
the calculation of the different velocity moments as well as for the application

of the H-theorem which we shall discuss in the next chapter. Here we con-

sider the back-scattered ions to be part of the plasma on the front side.

For the second possibility, we can start out from the premise that the
back-scattered ions have a destabilizing effect. The resulting fluctuation
increase will cause a trend toward greater isotropy even within the stability
limits where, moreover, the secondary maximum in the distribution functions
is reduced which corresponds to the back-scattered ions., If this process is
sufficiently effective, LA will amount to only a few earth radii Re. In that
case the shock wave region S will already begin a few earth radii in the up-
stream direction. The advance wave region will contain advance waves and the
processes just described. Now, we must use measurements acquired at a sufficient
distance from the shock wave itself in order to determine the plasma state
on the front side of the shock wave., It is our expectation that the anisotropy
of the ion distribution functions is somewhat greater there than the anisotropy
of that part of the distribution functions which are located about the primary
maximum in the vicinity of the shock wave. In that case, we might be able to
explain part of the discrepancy between the anisotropy measurements of Wolfe
et al. [1966] aboard Pioneer 6 and of Hundhausen et al. [1966] aboard the Vela
satellites in relatively close proximity to earth. In any event, the back-

scattered ions will not cause any difficulties with respect to derivation of

the step functions.

In summary, we can state under the reservations named above that the ions
have an almost isotropic distribution function behind the shock wave region
[Wolfe et al., 1966]. According to the information furnished by J. Wolfe,
the anisotropy measurements of the electrons must be considered highly un-
certain because of the encountered interference potentials caused by photo-

electrons. On the other hand, the mean electron temperature in the rear of
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the shock wave of earth, that is, where x < 0, is lower than the mean ion
temperature so that the uncertainty with respect to exact information on the
anisotropy assumes a lesser significance [Olbert et al. 1967]. Based on what
we stated above, it is a natural idea to make the additional stipulation that
the particle distributions behind the shock wave region are isotropic. In
that case, it follows that P =P and that q = 0., Moreover, if we
7”4l 1,1 n,1l
limit the given distributions on the front side to those where 9 0 = 0, it
k)

also follows that [qn] = O.

In doing so, we are aware of the fact that the measurements provide state-
ments only for specific values of the anisotropies and pressure contributions

of the individual particles, of the magnitude 8§ in the vicinity of earth

o]
(0.1 = §04$ in the tens), of the angle 90, and so on.
Strict justification for these stipulations, and a statement of their
validity range, can be provided only by a general theory on the
structure of shock waves in an anisotropic plasma. However, the following
section contains some physical considerations of a more generalized nature
which appear to make these stipulations meaningful under certain assumptions
with respect to shock wave strength.
2.4. Physical Justification of the Additional /56

Sﬁipﬁlafions, ahd Introduction of the
H-Theorem

We have seen in the preceding section that all important models of shock
wave structure state that turbulence develops in a collision-free plasma in the
vicinity of the shock wave as a result of instabilities and the effect of in-
homogeneity. After manifold processes this turbulence is finally attenuated
until the end of the wave region is reached. The waves used to describe this
turbulence have been substantiated at least qualitatively through observations.
While the constant magnetic field is the dominant field in front of the shock
wave region (O, Ls) and behind it, and while the wave fields E, (x, t) and H
(x, t) as well as the fluctuations 8E and 8H can be disregarded over the length
and time scales under consideration here, all of these magnitudes play a
significant role within the shock wave region S. 1In order to investigate this
problem further, we shall consider the H-theorem for the shock wave transition.

We define
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numerical ion density

where n = ¥n
w

all ion types
Egq. (3a) by (1 + log fu), summate over all particle

We obtain:
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Now we multiply
types, and integrate over the velocity space.

and consequently

%%S@F[ogfrdy 2
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Taking the mean over y, z, and t, as well as integration over x will then

yield:
(20a)

[% g{r Uy fog f:“ d\_/]

Lo



|

According to our statements at the end of Para., 2.2.1., the left side
of Eq. (20a), using the ensemble 51, will yield the same value as for &,

Consequently,

Xy Xe
(3 hvclog b ax] = [T ax= [ 6, an (20b) /58
X X

Moreover, the Egs. (11), (12), (13), (14), (15), and (17) will remain
unchanged, and so will the values of the magnitudes in them. The difference

between the ensembles € and 61 is felt only within the shock wave region.

This means that the right-hand side of Egs. (20a) and (20b) is determined
only by the fluctuations defined in 61 which incorporate primarily the effect
of the discrete nature of the plasma matter. We can also express this in a
different way. According to Dupree [1963, p. 1717, right-hand column], it is
possible to split off a component from the functions occurring in the Mayer
cluster development of the ensemble means of the fluctuation products, which
component expresses the discrete nature of the plasma matter. If we drop this
component, we will obtain the description of a '"fluid type'" medium which is

described completely by the Vlasov equation.

Therefore, we shall briefly investigate the consequences resulting from
the stipulation that fu e will satisfy the Vlasov equation for all particle
1
types p. In that case, it will apply that C e = 0 and G e = 0, and
Ho&1 Mgy

hence also that

¥4 ¥,
( & 6# dx)é =0=( S C}‘dx}
Xo 1 X, €

and even more so that
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Before we can derive some statements from the observations, we must still 159
discuss the interrelationship existing between the measured magnitudes and the
ensemble means. According to the magnetic field measurements with relatively
great time resolution which were cited in Section 2.3, there are highly
instationary processes of small time scales present within the shock wave region
(o, lb) which make it appear that the time resolution of the plasma experiments

is insufficient by far in order to acquire f e =< N > e.” Therefore, we
CEAS ] W 1

can only hope that we will be able to determine the distribution functions

fu7€ =< N >8 which do not include the instationary processes by definition.
Since, according to the principle of plasma analyzers, only random samples of
distributions are measured in different regions of the velocity space during

one measuring cycle, it will then be necessary to take means over several
measuring cycles. During this period, fu e must not be subject to major change,

b}

for instance, due to the satellite's motion. Except in the shock wave of thick-

ness Lﬁ itself, in most iustances this condition is satisfied, for instance through-
out the transition region between magnetopause and the earth's shock wave.

Since the plasma measurements in the transition region always took place in

areas subject to magnetic field fluctuations that cannot be neglected per se,

we shall attempt to derive an equation corresponding to Eq. (20a) where the

upper integration limit X is still located in the wave region. Using the

definition A(x = x ) -~ Alx = xg) = [A ii , it applies that
- 00O X -

( gf,;,e’, v, fog f,‘l e, dv] = S G, 4x
X, v *

Where x = x,. it applies, of course, that f = f = f and that
0 prEess ’ boooT,E W,E

=0 as well as 0/dt = O. We can also write

N /60
(5§ b v log be de]

(20c¢)

= gbc_{ dx 4+ {% ffr,e v, ﬁog fr.‘ A\_{—%j‘f}"g' U goj F';g‘al.\_/}

X=X,
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The left-hand side of Eq. (20c) is determined by the measurements,
If we can neglect the curly bracket we will obtain the integral L‘ G, dx

which must be equal to zero when the Vlasov equation applies.

Now we shall assume that the distribution functions are subject to
point symmetry with respect to the mass velocity v, =,—‘?—£.,7‘_ J:! :f/i,f d¥ Mu where
Qe =§jf/’~’€ ayv Mu: The observations indicate that this approximation will be
adequate for our purposes. In that case we will obtain the following if we

neglect the curly bracket:

X5

[vxe% S'f,u,t ﬂ"j f}*,{ d!]x"

(21)
zs
=-[VeZ [ fpe Log fe av],
¢ Xs
== Voe 7| Hg]'x. - § Cg, &~
or
Xg e A X‘— i XI__

where we have used the particle number conservation equation [Vn . n(] )’:S =0
1) [o]
Moreover, we first approximate fI-L ¢ by means of an anisotropic Maxwellian
,€
distrubution and calculate H w, € and HB' The notations || and __L designate the
3

magnitudes located parallel and perpendicular to the magnetic field in the usual
manner.
%

“rm 77

fe=m e
pE po€ 9T x 7,',1/"( 2Tx 7;/1’{

2 2
B . (V—We) m/*(nyTM
voep 2x 7,7//4[{ 2 x 71’/4,(
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where % is the Béltzmann constant.

More over, we obtain

g = [ e Log fe b = consh Log ot
e e 3T Tope Tap€
The constant includes only natural constants.
Now we obtain
v, (22a)
A X 2 X
T, :
- [ H,‘*,{]x = [ goj M;lﬁf]
. Mpe T

and

% % (22b)
R - e Tel 1 (=
X %‘ n, [ goj —‘L/:,iif"z' V o S\Gidx(

Now we also make use of the observation that the next frequent ion type
in solar wind after the protons, which is He*t, has always been measured at
four times the temperature. Under the assumption that the temperatures of all
ion types change at the same ratio during the shock wave transition, and
that this applies to T ,and well as to T, , we obtain the result that [ %Jii

is equal for all ion types and that, consequently,

"[Hc] —[f m( Tg] [foy /eé' eﬁ]

Mg

Lk
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The plasma measurements by Wolfe et al. [1968] aboard Pioneer 6 yield
the following for the earth's shock wave:

4
[ﬁog_r'eg Te€] = +0,05 * 0,16

[Qag 77‘——~IL4!'] = +35 035

and, consequently,
- [Hplis = 25500

This makes allowance for the experimental uncertainties. Moreover, the un-
certainties include an estimate of the possible effect of the back-scattered ions
described by Asbridge et al. [1968]. The point of least magnetic variations was
used as the reference point in the rear of the shock wave, Allowing for the
flow inhomogeneity behind the shock wave will cause little change in these re-
sults, nor will the approximate incorporation of the effect of the turbulence
which is expressed by the remaining H- variations. For, if we assume that
the magnetic field fluctuations in the vicinity of the reference point represent
a wave field of MHD waves, the associated velocity fluctuations can be estimated
and compared to the thermal velocities. It is found that these variations can
be neglected. However, the possibility remains that turbulent wave fields could
play a role which do not have magnetic field variations like, for instance, ion
acoustical wawes. But a large error caused by these waves in the temperature
determination in the vicinity of our reference point is improbable because it
applies in the '"'magnetosheath'" in this example that Ti,a/Te,E;w 1.5 which implies
a strong attenuation of ion acoustical waves [cf., for instance, Fried and Gould,

19611].

An interplanetary shock wave was observed on October 7, 1962, with the aid

of the Mariner 2 space probe [cf. Sonett et al., 1964]. For this wave we obtain

[log( Tﬁtf l{//n ¢ J~— 0.23 Since isotropy was assumed for this evaluation,

and since the magnetic variations are known only with ppor time resolution, the
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uncertainty in this case is greater than 0.26, so that [ ]xs > 0,* too,

would be compatible with the data. 0

Moreover, interplanetary shock waves have been observed with the aid of
the Vela satellites [Gosling et al., 1968]. A shock wave was observed on January /64
- v Xe
20, 1966, which yielded a value of [log ( Tuie Tni¢/Me)]=+ 055 . On October 5,
“ 4 .
1965, a shock wave was observed where [log(ﬂuj7l;qﬁh;y?0-50- Again, however,
it was stipulated that isotropy applied. The paper by Argo et al. [1967], which
was mentioned above includes observations for 13 passes through the earth's

W T X3

shock wave. Table 3 lists the values of [log('n,fé TZ,Hg/HI;g)JK for the
A . . .

values listed in Table 1 of the paper by Argo et al.

TABLE 3

T A
o =< [og (Te " /7 )],
2.8 17 + 3.2
14.0 (2) 16 + 1.5
2.3 25 + 4,0
6.8 50 + 4.0
4,2 10 + 2.0
3.8 23 + 5.4
2.% %6 + 4.5
2.1 17 + 3.5
3.1 a7 + 4.5
1.25 12 + 3.5
2.2 36 + 4.6
2.8 30 + 4o
6.8 10 + 1.5

* Space in brackets blank in original.
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Again, the uncertainties in these measurements are greater than the un-
certainties in the Pioneer measurements. The temperature ratio Tl,ﬁ/Tb,E
was formed from mean values. Magnetic field measurements which might indicate
the presence of any highly instationary processes are not available for the
period when the plasma measurements were taken. However, the authors state
that the measured values are normally reproducible from one measuring cycle ééi_
to the next and on both sides of the shock wave. These measurements confirm the

results of Pioneer 6 in spite of considerable uncertainties.

Moreover, the few measurements of the electron distribution functions con-
firm the results acquired from Pioneer 6. Although we are aware of the un-
certainties involved in the plasma measurements, we can draw some important
conclusions. The large values of [1og(’]"“;\/; -E_i'e‘ /ni'{)]:= - [ﬁé,{];‘ and also
- {‘Hé])’:g are incompatible with the statement that the Vliasov equation for fI-L &1 is
adequate to describe the physical processes taking place within the shock wave
region (O, LS). The nonvalidity of the Vlasov equation within the shock wave
region shows that the fluctuating fields which are defined in the ensemble 61
play an important role in defining the shock wave structure. The effect of the
fluctuation fields is best described by a correlation term of the type that
occurs in the Balescu-Lenard equation and was already mentioned above. This

correlation term has its origin in the discrete nature of plasma matter. In

its most simple form the Balescu-lLenard equation

%%; = Ce,BL

treats an homogeneous, stable plasma of electrons and of an immobile ion
background without magnetic field, allowing merely for electrostatic fluc-
tuations. In that case it can be shown, as for instance by [ Montgomery and

Tidman, 1964], that

The generalization of the term Ce to allow for several particle types /66

BL
?
b =1, 2, eaa is found in Dupree's paper [1961] and in the book by Montgomery

and Tidman [1964]. Thus we obtain by analogy:
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dt

The relationship is usually called the H-theorem and represents a generali-

dH _ d Rp [ = =G £ 0
T = gt = e He 2 G

zation of the entropy relationship dS/dt 2 o. Among other conditions, the
H-theorem is satisfied by Boltzmann's collision term which, however, is not

of interest in this connection.

If we apply the generalization of the correlation term Ce BL to several
v

particle types C in order to determine Gy in Egs. (20), we obtain with
1

4, BL

xl < xo

)

oV [HI==V, p S 2 [lop (Tofh Top /)]

~ Lo (23)
as we can also see from the measurements cited above. Of course, the
assumptions made to derive the Balescu-Lenard correlation term are much too
stringent for our shock wave problem. We are concerned with an inhomogeneous
plasma in the magnetic field which may even be instable at some points. More-
over, the limitation to electrostatic fluctuations is certain to be too
restrictive. Among other researchers, Eviatar [1967] has expanded the theory
to include the case of an homogeneous plasma in a magnetic field with general
fluctuations. Incorporation of inhomogeneity is still outstanding. However,
it is physically meaningful to assume that the inequality (23) will retain 167
its validity even then. In that case, the inequality (23) will replace the
entropy condition of shock wave theory in the isotropic, collision-dominated

plasma.

Another interesting characteristic of the Balescu-lenard equation is that
a Maxwellian distribution is obtained for t * o under any desired initial
distribution function. In order to characterize these processes we can intro-
duce the deflection period TD(X) which expresses the time required for the
90° deflection of a test particle of initial velocity v. Tidman and Eviatar
[1965] and Eviatar [1966, 1967] have shown that this period TD(X) can be
smaller by several orders of magnitude in the case of certain particle

distributions than it would be in accordance with the relationships that apply
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to Coulombian collisions of pairs. One possibility of achieving this is the
destabilization of the plasma. In that case, the waves excited by the test
particles will be subject to less attenuation, and accordingly, the feedback
effect of the wave field will be greater. If the boundary of indifferent
equilibrium is exceeded and instability is reached, equations of the Balescu-
Lenard type will become invalid. The processes described by these equations
will continue to have an effect, but now it is necessary to allow for non-
linear effects. In addition to reversible damping by the Landau mechanism
and cyclotron damping, the fluctuation fields associated with the discrete
nature of the plasma will cause an irreversible contribution to damping.
Moreover, they contribute toward greater plasma isotropy. This emphasis on
the effects of the discrete nature of the plasma, however, does not mean that
the mechanisms described in Para. 2.3.l1l., above, will be of lesser signifi-
cance. The final form of the particle distributions is affected just as
decisively by the processes described by the Vlasov equation as the structure
of the shock wave region. The magnetic field variations measured behind the
shock wave of earth are the manifestation of processes which can be described
in good approximation by the Vlasov equation. Now, what is the effect of these /68
instationary processes on the final distribution function f of particle type
w2 "

It was mentioned before that an accurate answer to this question pre-
supposes the availability of a theory on shock waves in a collision-free,
anisotropic plasma. Any such theory would normally require the availability
of a theory on strong plasma turbulence which is practically nonexistent.
However, when we progress in the negative x-direction (cf. Figure 2) in the
wave region behind the shock wave, the turbulence energy will decrease because
of the absence of turbulence-generating processes. In that case, there may
exist an area where the fairly well developed theory on weak turbulence can
be used [Litvak, 1960; Kovrijnykh, 1964; Kadomtsev, 1965]. This theory can
be adequate everywhere in the case of weak shock waves, as shown by the shock
wave model of Litvak [1960], Fishman et al. [1960], and Camac et al. [1962].
The theory of weak plasma turbulence regards wave packets (plasmons) under

the aspect of the particle-wave and wave-wave interactions and under the
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aspect of propagation effects. Necessary criteria for the weakness of the
turbulence include weak imaginary components 'kil < kr of the wave number

k = kr + iki’ and free wavelengths 1 for the wave collisions that are greater
than several typical wavelengths 2T/k. Moreover, the effect of the discrete
nature of the plasma can be taken into consideration. As we progress in the
negative x-direction, the free path length for wave collisions, 1, will con-
tinue to increase with the result that, finally, the wave collisions can be
disregarded. In that case, we enter an area where the quasilinear theory
becomes applicable. The waves no longer have any direct interaction. They
merely cause velocity space diffusion and consequently, changes in the

distribution functions that have a feedback effect on the waves via the dis-

persion relations.

The shock wave theories of Para, 2.3.1. provide no statement on
the final distribution functions, or only vague statements. Therefore, we
shall consider as an example the advanced development of the shock wave model
by Litvak [1960], Fishman et al. [1960], and Camac et al. [1962] (cf. Para.
2.3.1.). Using the '"number" of plasmons, n, , per unit of volume in the con-
figuration space and in the wave vector space, k, and stipulating weak
turbulence, the wave transport equation [Camac et al., 1962] will be appli-
cable

2Nk Nk du. 27Ms
PR +(u,+1{7) 9 x +£‘dx EP P

(24)

D N«

_ .., + Z e .
= 2% % 2 )wave collisions

where Vg = Buyakx is the group velocity component in the x-direction, com-
pared to the plasma at rest. Ch is the circular frequency, measured in the
steady-state system of plasma BR' The equation has been expanded by the
damping term. It is stipulated that, at the start of the wave region, the
wave collisions shall be predominant and shall determine the form of the
function nk. According to the paper by Litvak [1960] in which damping is

neglected,_the generally applicable steady-state solution for the wave

collision term <6n_ = O reads

ot wave coll.
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where A and ﬁ_are constants. Now we could obtain a more accurate solution for
n after linearization of the collision term by means of a perturbation
calculation about the equilibrium function, similar to the Chapman-Enskog
method for gases, where a development about the local Maxwellian distribution
is made. In the case of strong wave collisions, we can consider the above
formula to be a good approximation. Since the plasmons originating from
whistler wave packets which are under consideration here, are strongly
attenuated below a wavelength of re = c/u%e, the theory will no longer apply
in that region. On the other hand, however, this is an interesting area be-
cause plasmons can be moved toward high k values as a result of wave
collisions, and can be strongly attenuated there. Now, if we consider

. Consequently,

k
waves with k - §_> O are more frequent. We can conclude from this statement

nk=A/mk-\l-§, we will find forl_{_-g>0that1_'_)k>n
that more waves are moved by collisions into the area of strong attenuation
where k . §_> 0 and k > ZTT/re. Since the impulse of the plasmons per unit
of volume dx and dk is given by no- k, the wave field where k < ZTT/re will

lose impulse in the direction ﬁ, _however, in order for the distribution nk

within k = Z'H/re to correspond approximately to the form n = A/uk - ﬁ_- k,
it must apply that ﬁ_* 0. Consequently, nk ~l/ui{ should apply at some distance
from the shock wave. In the case of the k space, this is a distribution which
is symmetrical with respect to the zero point. Moreover, according to the
description of this shock wave model provided in [Camac et al., 1962], part

of the energy of the fast, clockwise-polarized plasmons is lost through

transformation into slow, counterclockwise-polarized plasmons.

When the turbulence becomes weaker, the attenuation effects and propaga-
tion effects bedin to predominate, and highly damped plasmons are suppressed.
Finally, the following equation applies:

9

M
2 X

=+2X[_<-7’l,_(

(e + )

where have used dux/dx;g 0. Moreover, if we take into consideration that waves
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whose propagation is oriented at an angle to the magnetic field are subject
to greater attenuation than waves propagating parallel to the magnetic field, [71
and that 60 = 91 = 90° applies to the shock wave model under consideration,

we will find for the dominant plasmons that | 2o €lu_| and hence that
% |

3k
x

u' 9725 — "232_( 7/25

It applies especially in the steady-state plasma system BR after trans-

i -+
formation of Bo BR that

zggﬁ» = + 2 35 © My
This means that, in the steady-state plasma system B_, the quasilinear
theory of an homogeneous medium can be used that is subject only to time
variation; such a theory is fairly well developed, Where the path transfor-
mation of the term with ank/ax is impossible, the quasilinear theory of in-
homogeneous media would ha;é to be used which is still poorly developed [cf.,

for instance, Tidman, 1967 a].

What is the direction of change of the distribution function in the quasi-
linear region? Kennel and Engelmann [1966] studied the quasilinear theory of
growing waves (yk > 0) with the result that it must apply in the asymptotic
case for t ° « a;h for all waves that Yk = 0. The incorporation of negative
values of Yic which are of special interest to us, will yield Yi < 0 in the
asymptotic case. The authors themselves state that the asymptotic case is
relatively uninteresting since the periods during which natural processes
take place are limited. Yet, the result obtained by Kennel and Engelmann is
important because it indicates the direction in which the distribution functions
change. In our case, we are interested only in processes that are completed 172
within periods L_/ izlt <L/ {11].

Secondary maxima in the presence of small helical angles in a tail of
distribution fe are rapidly reduced as a result of electrostatic electron
oscillations. Moreover, in our case where §O <€ 1, the resonance interactions

of the waves considered above are of interest which were described, for instance,
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by Kennel and Petschek [1966]; these will prevent any strong anisotropy. Un-
fortunately, the energies of the interactions under consideration here are
located far above the thermal energy of the plasma so that it could still be
anisotropic. With these relatively weak isotropization mechanisms, we shall
conclude the expanding discussion of the shock wave model of Litvak, Fishman

et al., and Camac, which serves as an example for similar considerations.

Another type of instability which is interesting for the case where
§0 > 5/6, is the so-called "firehose' instability. This is encountered where
P, - P > E?/4W. According to Shapiro and Shevchenko [1964], this instability
will stabilize itself, ensuring that P; - P, <= ﬂ?/QTT, which would be ex-

pected after our statements above.

Reflection instability imposes somewhat more stringent requirements on a
stable distribution function. This instability depends not only on the total
pressures but also on the ratios of the pressure contributions of the different
particle types to P, and Py . In the most favorable case, instability results
only where P, - P, >(B’ /P,) . E?/8TT. Consequently, instability can occur
under any value of §_ .. However, instability becomes interesting only for

O

~ 2 . . . A . .
large values of s if RL - P,> ﬂ_/BTT is considered the instability criterion.

O,
However, the two last-named instabilities do not limit the anisotropy to

a sufficient degree. For the effect of the remaining anisotropy behind the

shock wave on the step functions which we must still derive has approximately

the same magnitude as the effect of the inaccurate information on the pressure 173

tensor behind the shock wave, if only the two above-named instabilities are

available to limit the anisotropy.

We now come to the question as to the circumstances under which the iso-
tropization processes are not adequate. Based on the foregoing, the
fluctuations 8E and &H in the ensemble 31 play a large role in the isotropi-
zation of the plasma. The instationary processes which are incorporatad in
the ensemble means of 81 are important to the strength of these fluctuation
fields because they yield the highly asymmetrical distribution functions.
Moreover, the fluctuation fields SE and 8H in the ensemble 31 cause a change

in H which is [H] < O. If the contributions of the ions and electrons to [H]
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disappear, meaning that both have an "adiabatic' behavior, then we cannot

expect any isotropization to the degree that would be encountered with a large

value of ‘[H]l.

At the end of this chapter, we shall discuss briefly two other additional
stipulations which have been proposed for the investigation of the jump
relations of shock waves in an anisotropic plasma [Abraham-Shrauner, 1967, a,
b; Lynn, 1967]. Both of these authors discuss the case where 50 € 1 in the

presence of strong magnetic fields.

Abraham-Shrauner [1967, a, b] started out from the Chew-Goldberger-Low

equations. Using the relationships

D P
i (—_‘—lel)‘ o (25)

and

which are applicable only for a magnetic field of constant direction in the
absence of any spatial variations in the magnetic field direction and other-
wise only under the stipulation that the heat conduction Vector is absent,
she derived two energy conservation equations for an energy component which
is parallel to H and for a component vertical to H. Again, the derivation
of these relationships can be verified only under the stipulation that the
magnetic field has a constant direction. However, let us assume that these
relationships are correct. In that case we will obtain, using the index i
for ion:

AW |t qui =0

ot B (262)

2
\Ju‘£= i Ui + Hli

1
2

2
EI_HL = P: Ui (% Yy,i + Euli) + Ei'_Bd,C

Py

€U :W
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and 'BVQ .

2
Wit = g(piie 2P v By (26b)

. 4 2
9ge, i = £ E.’(E‘ BJ_'L +€-L,‘:)A+ui'£_l~‘[ +H"(!£XH)

€, ¢ :-——BtLi_
‘ P
Integration over x will yield the two conservation equations (1) and (2) /75
in the paper by Abraham-Shrauner [1967, b]. However, these Egs. (1) and (2)
are not equivalent to the Egs. (26a) and (26b). We could have summated terms
of the form div L in Eqs. (26a) and (26b), where it is merely necessary that
L disappear when 3/0x = 3/dy = O 3/3z = O, and nothing would have changed in
Eqs. (1) and (2). But this also means that the validity of (1) and (2) in
Abraham-Shrauner's paper does not include the validity of the Egs. (25). For
instance, let us discuss the case of a shock wave with GO = 90° on the basis
of Abraham-Shrauner's equations. Using Egqs. (1) through (6) of Abraham-

Shrauner, we will obtain

) _ He .3
Pui [ Poi. 4+ 3T+ T P 2
91:/  Poi (1— 2:/2) (4 + 7:)°

= ,.P»r,i —.Pog‘.
Z Po i
Due to [Hy/oi] = 0, this expression would have to yield a continuous
result of one in order to be compatible with Eq. (25a), that is %% (R”7$J5’):0 .
But this expression is equal to one only where ﬁi = O. On the other hand,
however, Egs. (25a) and (25b) represent the starting point for Egs. (26a) and
(26b) which are equivalent to the Eqs. (16) and (17) by Abraham-Shrauner [1967].

Consequently, this derivation is contradictory.

This is a different situation as that encountered with a similar "problem"
involved in the formulation of the conservation equations for shock waves in
gas dynamics. For, in the case of the latter, if we use the generally appli- 176

cable equation of mass conservation, 3p/dt + div(pu) = O, the equations of
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motion, and the energy conservation equation without dissipation terms

(friction and heat conduction), we will obtain, after the customary inte-
gration over x, the correct conservation equations of the form [ ] = O for

the shock wave, and these equations will also yield the correct expressions
for the jumps in the different magnitudes. Moreover, except for [p] = O these
jumps will yield entropy changes that are incompatible with the absence of the
dissipation terms. Again, the reason for this is that none of the dissipation
terms will yield a quantity upon integration, so that the same conservation
equations are obtained with and without dissipation terms. And this result
must be expected because the relationships used there are expressions of gener-
ally valid physical principles such as the conservation of mass, conservation
of impulse, and conservation of energy, while the two separate energy con-
servation equations by Abraham-Shrauner require very specific prerequisites:

namely Eqs. (25).

Instabilities of the type described by the Chew-Goldberger-Low equations
in the form described by Abraham-Shrauner [1967, al] will not be helpful here.

The CGL equations can be expanded by allowing for smaller time scales T < ZH/QEi

In that case, Egs. (25a) and (25b) will no longer apply even in the case where
eo = 90°,., Summarizing these considerations we conclude as follows: either the
Egqs. (25a) and (25b) are correct with the result that very stringenc conditions

apply which practically allow only transitions with

gl ] fo (B2 (2

Or the Egs. (25a) and (25b) do not apply within the shock wave region. In

that case, the Eqs. (1) and (2) by Abraham-Shrauner [1967, b] are unjustified
ad-hoc stipulations. As we mentioned before, the conservation equations by
Abraham-Shrauner [1967, b] contain only ionic magnitudes. Now, we subtract
from the vector conservation Eq. (12) the corresponding equation by Abraham-

Shrauner [1967, b] that contains only ionic magnitudes, and we obtain

[ MV + Perm[=0 (26¢)
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where e denotes the electronic magnitudes. Moreover, we exploited the cir-
cumstance that n = n, and V, = V must apply outside the shock wave region.
e i -1 —-e
If we consider the x-component of Eq. (26c) and compare it with the measure-
ments by Wolfe et al. [1968], we will obtain the following numerical values:
[.dﬁhL__ V’lj = VI =—yxio ™ dun
'Y‘n;+mef a —[meﬂ w | =— pns

and

[ Prals [nx ] = asei 45

Moreover, the observation by Olbert et al. [1967] will yield the same order
of magnitude for [Pxx, e], while the transition; investigated by Argo et al. /78
[1967] confirm the order of magnitude of [men Vn]. Consequently, Eq. (26c)
is not satisfied even in approximation. Since it applies for the measurements

by Wolfe et al [1968] that § _ ~ 3, the discrepancy can be due to the fact, of

(0]
course, that § <€ 1 is not satisfied. 1In any event, arguing on the basis of

Eq. (26c) willomerely permit the statement that the theory by Abraham-Shrauner
is valid at best within one spherical shell about the sun which is far inside
the earth orbit. The inner radius of this spherical shell is determined by
the increasing significance of collisions with decreasing distance from the

Sune.

Since Eq. (26c) is also obtained through subtraction of the conservation
equation derived from Eq. (1b) of Lynn [1967] from our Eq. [12], the argument
stated above will apply in that case, too. Lynn [1967] started out from
equations containing ionic magnitudes and especially the ionic pressures. The
result was the same as our Egs. (11), (12), (13), (14), (15), and (17), where
our magnitudes are replaced by the corresponding ionic magnitudes. He used
the additional assumptions that [qn] = 0, and that

P, i
[WJ =0 (264)

Neither the observations by Wolfe et al. [1968] and by Ness et al.[1966],
nor those of Sonett et al.[1964] will confirm this formula, although this can

be due again to the fact that §o € 1 is not satisfied.
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According to Lynn [1967], Eq. (26d) follows from the conservation of the

first adiabatic invariant

2
v
"La&._ ‘Hl
for each individual particle. The conservation of uad requires that the time [79

scales of the field changes in the steady-state system of the particle in
question be greater than the gyro period. If we consider the time scales in
the models described in Section 2.3. for the structure of collisionless shock
waves where §O € 1, the time scales will be found to be much smaller than
permissible. '"Whistler' waves having wavelengths between ry and r, are pre-
dominant in the shock wave model by Fishman et al. [1960] which applies to
shock wave velocities up to Vh’ 0 ~ 3 VA’ o at an Alfvén velocity of

Va0 = I8, /V‘”R% . The associated frequencies in the steady-state system
of particles are in most instances greater than fci’ the ion gyro frequency.
Moreover, the computer models by Auer et al. [1962] and Rossow [1965; 1967]
which, however, are one-dimensional, reflect time scales for large-amplitude
fluctuations that are located far below the gyro period of the ions with
Zﬂ/fci. These papers permit the conclusion that assumption 26d is not

justified.

Finally, a large part of the states in the rear of the shock wave which
are obtained with the aid of the jump functions by Lynn [1967], are unstable.
For instance, where 90 = 90° and §O € 1 it follows from Lynn's equations that
in the case of ,Hirfﬂo|%,4.4 the plasma behind the shock wave is unstable with
respect to fire hose instability when there is isotropy in front of the shock
wave. This instability will start even earlier when there is positive
anisotropy on the front side. Electron pressure was neglected in this
stability consideration. More precise investigation, however, will show that
electron anisotropy will even increase the instability. Even in the case
where 60 = 90°, a large part of the resulting plasma states in the rear of the
shock wave will be unstable.

It is seen from this section that the stipulation of plasma isotropy behind
the shock wave is meaningful when the shock wave is sufficiently strong,

although precise theoretical justification will be difficult. The assumptions

made by Abraham-Shrauner and Lynn, however, will encounter difficulties. One /80

58



important result acquired during the investigation of measured data from
satellites and space probes is the statement that, in the case of collision-
free shock waves, correlations between particles can be neglected in the regions
located in front of the shock wave region and behind it, but not within the
shock wave region itself. The Vlasov equation will provide a good description
for many aspects.

2.5. The Jump Relations for Contact Discontinuities /81
and_Shock Waves in an Anisotropic Plasma

Jump relations are defined as formulas which, for given values of p, P, H
on the one side of a transition state the physical magnitudes prevailing ;n the
other side of that transition as functions of a parameter which describes the
strength of the transition. Wherever possible we shall adapt the denotations
and classification types of the results obtained from Egqs. (11), (12), (13),
(14), (15), and (17), and the additional assumptions to the paper by Bazer
and Ericson [1958], in order to simplify the comparison. Consequently, we
shall define transitions with Vn = 0 as contact discontinuities and shall in-
clude them in the discussion for completeness. By definition, shock waves are
transitions where Vn #Z 0. The subdivision of shock waves into waves with and
without density change, which was made by Bazer and Ericson [1958], is not
advantageous here. We shall show in Para. 2.5.2. that a distinction between
collinear shock waves and non-collinear shock waves is advantageous. The latter

we shall also designate as rotational discontinuities.

Before we start, we shall also define the transverse part gtr of a vector

Q with the aid of the vector n in Figure 2:
Qr = Q-1n(Q -

Moreover, let us reiterate that we shall not make any statement on the

stability of the transitions to be obtained below.

2.5.1. Contact Discontinuities

There will not be any mass flow M = oVn through the discontinuity because
of Vn = n (here we define discontinuity in the sense of LS <€ L). In general,

we assume anisotropic plasma states on both sides of the transition. In
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that case, we can make a distinction between two cases: /82

It follows from Eq. (14) that Hn is equal on both sides of the transition.
Eq. (15) yields [V] = O or [Xtr] = 0., Consequently, the velocity vectors are

equal on both sides. The normal component of Eq. (12) yields
[P" cosae + PJ_sinZQ + §2/8¥T] =0

Using Eq. (17a), it follows from the transverse component of Egq. (12) that

[ (1 B2 ])] - o

Consequently, in the case of an isotropic plasma we have [Htr] = 0. In the

anisotropic case within the stability boundary toward fire hose instability,

it applies that H " Htr . Therefore, we can always find a reference system
where !0, Xi’ EO’ Ei are ?ocated in one plane which is oriented perpendicularly

to the y, z-plane. Finally, Eq. (13) yields

[qn - Hp/4T (E-E)(ﬂ * ng/;TP“ )J

When [H_. (1 + %:%;] =0, [u]-0anafy] -0, it follows that
H 4
[qn] =
Additional equations are not obtained. Let us summarize these relation-
ships: [ \/} -0
(83

[P ct® +P anto + H/sr]=0
(27)

PP
[ Hh (l + H/#T )J

(=0
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BT

Only the first and second velocity moments, V, P“ and P occur as plasma

magnitudes. This means that [p] can be selected at random.

Inequality (23) is satisfied automatically for distribution functions
which are point-symmetrical to V on both sides within the v-space, since
Vn = 0, Moreover, it will apply that q, = 0. In the case of other than point-

symmetrical functions,

[= [t o tog £ dv] > 0

must be satisfied. The equality sign will apply when the Vlasov equation is
also sufficient within the transition region.
H = O. /8%
Subsequently, because of 60 = 6. = 90°, the normal component of Eq. (12)
together with (17a) will yield

[p, + 5_2/811'] -0 (28)

The transverse components of Eq. (12) are satisfied automatically.
(V] = 0 is a random magnitude because of Eq. (15). No additional relationship
is obtained from Eq. (13) because of Eq. (17c). When the Vlasov equation
applies, Eq. (20) will always be satisfied because of Eq. (16).

Consequently, the states on both sides of the contact discontinuity where

Hn = 0, a so-called tangential discontinuity, are arbitrary except for satisfying

the Eq. (28).

2.5.2. The Collinearity Theorem and Generalized
Alfven Shock Waves

Now we shall investigate quite generally the nature of the changes in the
plane formed by the vectors n and H during the transition from one side to the
other of any random shock wave or contact discontinuity. We shall stipulate
that anisotropy is allowed on both sides. Since [Hn] = 0 and [M] = O, we can
use the transverse part of Eq. (15) to eliminate !tr in the transverse part

of Eq. (12) by a simple routine:

61



H, [\_/4,] = (V,, l‘_‘h,] according to Bg. (15)

+ %—:‘Hh] according to Eq. (12) /85

Consequently,

HnM [ _\_/4,]: [Mvn Hh]"[ ':7; He— H. (E'B)h]

Using Eq. (17a), we can express P s+ n in vector terms as follows:

Pm = mn (P a?0 +p ' ©)

B (29)
H
+((’J X E) X 73)(P|,— PRlcn ®
where
cos O = H - yl,fil
Cons eguent ly,
(B-2), = ((nx ) xn) (R—P) s ©
H
= ﬁ (Py = P) cs* o
and finally, /86
7
[ _H‘br(MVn— l/.l—;].: +(‘P"—"P_L)C0329)]:O (30)

When the round bracket on both sides of the shock wave is different from
zero, the result will be that H and H are parallel or antiparallel. But
—trl —tro
when will one of these round brackets disappear? We state

MY, - Hi /4T + (Py - P) c0s?6 = 0 and solve with respect to Vn, using M = QVn.
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In that case we obtain

$73
151 _R- PR - L
/.= it carh O (‘f _JW) == l)u (31a)

or

_ Py — P )%

ba= V) cn @ (4— H’/wr)
where VA is the Alfven velocity defined above. En is the phase velocity of the
well known generalization of the Alfvén wave solution applied to an anisotropic
plasma for propagation in the n direction, that is, in a direction enclosing
the angle 6 with the magnetic field H [cf., for instance, Barnes, 1967]. The
instability of this wave for P, - P > HZ/QT is the well known fire hose in-
stability. In the case of stability toward this instability, the radicand in
Sn will be negative. We shall exclude this case from the outset. Different
cases will result when we evaluate Eq. (30). We shall summarize the results éﬁ?

of this evaluation. First, we shall formulate the collinearity theorems

In the case where Vn, o £ En and V_ 1 A Sn the transverse part of

0 1’
9 9 ]
the magnetic field on the front side of a shock wave is collinear with the

transverse part of the magnetic field in the rear, meaning that the magnetic
field vectors EO and ﬂi as well as the normal vector n are located in the same
plane.

We designate shock waves that are subject to collinearity as collinear

shock waves.

, 0 and Vn, 1 A Sn, , are designated Alfvén

shock waves for obvious reasons. It is seen from Egq. 30 that these shock waves

Shock waves with V £Z b
n, O n

can be subject to random rotational angles between Etro and Etrl' Therefore,
we call them rotational discontinuities when the noncollinear case applies.
Now, are the other conservation equations satisfied in the case of Alfvén
shock waves? Because of Vn # 0 and Hn £ O, we can continue to define the ref-
erence system in which the shock wave rests, without loss of generality, by
demanding that Etr = O, This was already mentioned at the end of Para. 2.2.2,
In that case, VX H = O will apply on both sides of the shock wave. It is

especially easy to see in this reference system Bo that the remaining equations
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do not furnish any additional statement on the angle between H and H -
*tro —trl
Consequently, with fixed 91 and gtrl we can rotate the vector g%rl at random

against without violating the conservation equations, provided that they

H
—tro

were satisfied at the outset. In particular, we can also rotate Etr into the
1

plane formed by n and Etr so that the shock wave becomes collinear.
(o)
In the case of isotropy, we find the following for the Alfven shock waves £§8

because of Eq. (11):

\/n,« $o Hn WF

\/71‘0—— F’~ M"rff Hn

and hence that 0g = P; OF [p] = 0. Let us briefly study the special case

where [p] = O for Alfven shock waves in an anisotropic plasma. From [p] = O

we obtain [V ] = O, and hence because of V = b _, the relationship [(foayﬁfk Q.
n n n 4T

Since, once again, we do not have enough equations, we shall make the additional

2

stipulations that [qn] = O and [Etr] = 0. In that case, the normal component

of Eg. (12) will yield [P, ] = O, and the above relationship will yield [P,] = O.

Consequently, we are dealing with an Alfvén shock wave that has the following

characteristics:

—
=
n
—
i
o © o ©

2
In general, the expression (P” - RL) / gﬁ' can change during the transition.
In that case we obtain Vn 0 £ Vn 1’ and consequently, [p] £ O. Generally
9 9
speaking, Eq. (12) will yield the following for all Alfvén shock waves:

[». + 12/87] - 0.
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Of course, in every instance the inequality (23) or the generally appli-

cable relationship [E'S-ﬁ~“xf°gfy dg] > 0 must be satisfied, too.

Now, we shall assume that isotropy prevails behind the shock wave region. /89

In that case, it will follow from Egqs.(11) and (31) that

ﬁﬁz_&’: H., g (1_ Pi— Po )-_%z
Voo P f&Tp  H. HE fur

Consequently, , p
h /2
ol =(4~ J’-_‘D;)
P He/4T
and
p-p__ BR-RB
P HE/4T
Using the nomenclature of Para. 2.5.3., and the definitions
I Bl i ss- £ PR
L= p 3 Wi/ kT
this will correspond to
- 3
F=—F 4 (31b)

Inversely, Eq. (31b) in itself is only a necessary condition for a shock

wave (Vn £ 0) with isotropy in its rear to be an Alfvén shock wave. If we add /90

to this the condition [!tr] = [Etr] £ 0, we will acquire a sufficient and
necessary set of conditions to determine that a shock wave having isotropic

pressure in its rear is in fact an Alfven shock wave. This can be shown by

means of Eqs. (12) and (15). Based on the statement made at the outset of the

discussion of Alfvén shock waves, the jump functions for collinear shock

waves can be used to calculate other interesting magnitudes of Alfvén shock

waves,

At the end of this section we shall list two important boundary cases that
In the case where Etr,0= O and

£ 0, it must apply behind the shock wave that V = b ’
n, 1 n, 1

are of interest in conjunction with Eg. (30).
ﬂtr, 1 according
to Eq. (30). These shock waves are called switch-on shocks because a trans-

verse magnetic field is switched on upon passage through the shock wave region.
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Accordingl it must apply in th f H =
gly, i pply in the case o Br,0 £ O and Etr,l O that

We designate this type of shock waves as switch-off shocks.

v =b
n

n,0 ,0

2.5.3. Collinear Shock Waves

We shall now discuss shock waves in which the isotropization processes in
the shock wave region (O, lg) are sufficiently strong to achieve isotropy in
the rear of the shock wave., Moreover, we shall consider collinear shock
waves exclusively. On the front side, we shall merely stipulate that qn,O = O.
Generalization to include the case where qn,O £°0 is easily accomplished.
Subsequently, we assume on the front side of the shock wave the density 057
the angle 90, the pressure tensor Sb, according to Eq. (17a), and the magnetic
field EO' As a result of the collinearity of the transverse magnetic fields,
H. as shown in Figure 2 will be located in the x, y-plane, too. We use

h =H - H in order to characterize the shock wave transitiomn.

v,1 y,O/IEOI’
This means that, in the case where h > 0, we have a magnetic field increase
during the shock wave passage, since it applies (by definition) that Hy o 2 0. /91

b}
In the case where - sin 90 < h £ 0, it will also apply that Hy 1 2 0, however,
b
IEJ will not continue to grow. Nor will H grow'in the area where
- 28in §_ < h £ - sin 8. However, it will apply that H < 0. h< -2 sin 6
(o] 0 y,1 O
again corresponds to a magnetic field increase with Hy 1 < O.
’

Using the magnitudes defined above, we can calculate all other physical

magnitudes that are of interest for the shock wave; these are 01 Vn o’ Vn 1’
9 9
= = P \ = \Y = -LH d i trivi

P”’ 1 ?L, 1 1’ L y] [uy], L n] [un], [H], and in a trivial manner,
Ei' We stated that [Vy] = [uy] etc., in order to express that the differences
can be calculated, of course, in any reference system. We use the magnitudes
M. B, Y, ¥ to express the results. All the important parameters are summarized

again in the following system of defining equations:
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PL= P,
Pl = pgo
P, = PLaim* @, + Pu cos? &,
Pl = P.L.1 = Tu,1
= P
r ﬁh L
e
g,

. 2
='§ (Py + Pu)//jg#

1
S = §P°/1Tr'

g, =1 P24 ¢ + Pu(24 nim O nim® &) _ Sot+Las(1-2co'8,)
C2 HY/uT 5
- £ Pll__— ‘P_L
S B p

R = (H)’l'i #ng)/lf_/a/

L = R +%'/)l‘/n9‘, As

b, = wiitm

"o4Tp .
i Pu—‘ PJ.. 2
by = b. (1 T HY 4w
Q = P' /Po

? = (P«“Joa)/ﬂa

(32)

[92

Now we shall compile all the important relationships in the reference

system B_, using the coordinate system K_, in accordance with Egs.

(6]
(13), (14), (15), (17) and (23):
5—79 \/71‘n= Pa \/71,1

MV, +P +H;,.,/5?T:MV71,1 P o+ My, /8T

Ny "'H'o - HnH 4
M\ o + 4 (-R)snt0 P82 = M V0 = S5

v""o H)’.O_-\/y,a Hn. = \/7;.4 Hy‘»i_'Vy'g H,,"O

(11), (12),

(33a)

(33p)

(33c)

(334)
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, ; (33e)
A
M4 (Voo #+Vio) + +Vao(Pi+2PL) ¢ Vs, P,
+ Vy,o -2L (Pu - P_l_) ’“”"’ 2 99 + \/-n,o %%—2 - \/y'o */_I—):’_r%ln
i 2 2 z (33f
=M (Vo e V) v E VLR ey, ey Ha b P
A
2 (339)
LMD =3 Ze g ey o
F "

The inequality Vﬁ 2 0 in Figure 2 involves no loss of generality. It is
seen from the equation system (33)that 90 can be limited to O = 90 < 90° without

any significant loss of generality.

Now, we can use the given magnitudes to calculate, for instance, 1.

For this purpose, we start out by eliminating Vy o and Vy 1 by means of Eq.(33d).
* 9

Subsequently, we eliminate Pl, and finally, we use Eq. (33a) to eliminate

v /v . After some calculation, we obtain
n,l1” n,0

7 (30im 6 § ~ 2 om 6, 45 - 24) (3%)

+ 7 (§0m o, QL+2(1-?0)£ ¢-.éAs 0w O, °°°19a)

~R (B 2o O(1=F89) A= E a5 c0’@) = O

When we selected the denotations and definitions, we assumed that ﬁ and

h should not be defined differently than in the paper by Bazer and Ericson
51958]. EO, i
50 = §0 = So merge into s, as defined by Bazer and Ericson. Moreover, §O
was so selected that Eq. (34) will deviate as little as possible from its form

so, and §O were selected so that in the case where As = O,

in the case of As = O.
Solution with respect to ﬁ will yield the following from Eq. (34):

68

/93

[9%




5 . 2 & k4 ” 1 2

el e S L L (S (35)
2 om e, S, — _.%.ﬁ — -—52;: Aen B, As
where
. = . Z

RE = (Z4n0 R+ (1-T) R+ £ 05 a0, ces™ @)

+( {3 s O, E'o_-?;.,m. o, 8s)f — % y‘Z) .

. (‘Rl-l- (B./JV‘AQ°~—~§_—AVAQQ AS)PL“' ’Z: As leg")

Now, we shall calculate the other jump relations. Using Egs. (33a) through

(33d), we obtain
$ 7 ~A(})1@,r£_;~—:g)’6?
V-5 A 57(-} (36) /95

s 1 — 1?—- Avn O,
Moreover,
- /s
Vo % Voo (k —54m9~> (37)
.70 e z
(38)

5 oawm 6
Cunl | (_:L/J:__ 7 < R - 'Z,_g_--——>

b'n"! B bn‘1 £

~ . + (39)
Cud V%], 2 (ﬂ - z,errﬁ:.) :
B bn, €06 7

We selected bn instead of Sn as reference velocities in Egs. (37) through
(39) in order to have a reference velocity which is independent of anisotropy.

This will facilitate discussion of the effect of anisotropy on the velocities

and velocity jumps.
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3. Discussion of the Jump Relations of Collinear /96
Shock Waves in an Anisotropic Plasma

3.1. Introduction

The following chapter is devoted to the jump functions for collinear
shock waves. We shall confine ourselves to plasma states on the front side
of the shock wave which are stable against fire hose instability and reflected
instability in their most unfavorable case. This means that a permissible
region is defined in the As, go-plane. This region is defined by the condi-
tions P, - P, = Eg/hﬁ according to the stability criterion for fire hose
instability, P, - Py, =(p, /P,) gg/BW for reflected instability, and
P, 2 0, Py =2 0. The boundaries are mildly dependent on 90, since EO depends
slightly on 90. They are represented by solid lines in Figure 6 which
originate from the zero point. The boundary curves for As < O correspond to
the reflection instability boundary. The solid straight lines at As > O which
are numbered by different angles, correspond to the relationship P, = O. When
the point As = 5/3 is reached, the boundary line makes a bend and merges inté
the straight line that defines the instability boundary of fire hose instability.
The additional requirement of quasistability toward other types of plasma

instability requires special treatment and shall be neglected here.

Now, we must still define the solutions which we wish to consider per-
missible. Comparable to the definition used in the paper by Bazer and
Ericson [1958], we can start out with the requirement that the plasma state
in the rear of the shock wave has a steady-state dependence on the state pre-
vailing in front of the shock wave and on a strength parameter. In the case
of the Alfvén shock waves this requirement will lead to difficulties since

the rotational angle between Htro and gtrl is entirely random.
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Figure 6. Boundary lines of the different shock
wave types according to Section 3.3 within the
1imits defined by the fire hose instability,
reflection instability, and P4 2 0. The curve
parameter is 60.

The entropy condition is the second condition for shock waves that are
dominated by collisions so that they have Maxwellian distributions on both
sides, with equal temperatures for all particle types. The entropy change
can be calculated precisely from the pressure and density prevailing on both
sides of the shock wave so that an accurate answer to the permissibility
question is possible. In our case, it is not possible to state any relation-

ship which is as strictly defined as the classical entropy condition. After
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all, the inequalities (33g) and (23) had been derived from Eq. (20) under very
specific conditions that were of interest according to the observations made.
In order to characterize the thermal motions we had stipulated (isotropic)
Maxwellian distributions in the rear of the shock wave, and anisotropic
Maxwellian distributions in front. Now, if we maintain only the isotropy in

the rear of the shock wave and the stipulation that q = 0 in front, the

n, O
Vlasov equation under known P, , P,, o and P1 and oy will permit an infinite

number of different distribution functions that are quasistable in themselves
and all of which yield different values of (:% kavqujfr»AYJ according
1' 01 alone will not be sufficient to
decide whether the inequality [ % SIF Vs Log fﬂ.dyj >0 is satisfied. On

to Eq.(20). Consequently, P,, P, , 0g° P

the other hand, the discussion of the arguments in favor of isotropy has shown
that (isotropic) Maxwellian distributions are probable in the rear of the

shock wave. However, the question as to the partial pressures of the individual
particle types remains open. If we assume anisotropic Maxwellian distribu-
tions on the front side we will obtain inequations (23) and (33g). As far as
the solar wind relationships are concerned that correspond to the earth's

shock wave, it is a natural assumption, based on the observation acquired from
Pioneer 6 that was cited in Section 2.4, that the electrons have adiabatic
behavior in the sense of -[ﬂ]El = 0. In that case, we will find the following

for the electron pressure behind the shock wave region:

3 K 53
P1,El. = ( P_L.El-) ? (Pﬂ.E‘-) ’ (1+7) (Loa) /99

We can now calculate the ionic pressure that must be inserted in (33g)

i = - P
on the basis of Pl, ion P1 1, El.

If, by way of another example for the front side, we assume that

Py g, /Py w1, = P, Ion /By, Ton in addition to

P /P =Py /Py
4,E1.774,EL. »Ton »Lon and hence also
Py g1./%4,E1. = Bi,Ton /F1,I0n

we will obtain

"[H] =—2[‘:‘]Ian20 (QOb)
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-

—[ﬁ]ion(h) has been plotted in Figure 16 for the example where 90 = 45°,

wuin
o
1

= 1.0 and for different ratios of R'/PL, and in Figure 23 for 90 = 20° and
0.5. Here it applies that

ui
o]
]

¥

Y,
__EH]IO.;:"I'[HJ‘—‘QOJ(F)BW (%)) (L1)

Measurements and the theory show that we cannot expect the same ratio of
anisotropic pressure components for electrons and ions in solar wind. However,
the figures cited above were intended merely to serve as an example for a
possible variation of -[H] = -2[ﬁ]ion. Consequently, when we use (33g), the
location of the interesting point where it applies that -[H] = O and which
yields a boundary between permissible and nonpermissible solutions, also
depends on the distribution of the pressures of the individual particles be-
tween the total pressure P, , P,, and Pl. Therefore, we must make additional

stipulations from one case to another in order to apply the generalized entropy

relationship. We can even state that, for a given P, P,, and o and with a

)
calculated Pl and pl, we can always achieve that the inequation ?339) is
satisfied by making a suitable selection of additional stipulations on the
distribution into different partial pressures. Therefore, we shall drop the
generalized entropy condition from our further considerations in this chapter.

3.2. Mathematical Characteristics of the Step Functions
of Collinear Shock Waves in an Anisotropic Plasma

3.2.1. Generalized Shock Waves Under Arbitrary ©

In our discussion of step functions we shall consider primarily the function
N(h) under fixed GO, SO and As. We shall keep in mind that we are limiting
GO to 0 < 60 < 90°, Since the other step functions are defined relatively
simply by N and h on the basis of Egs. (36) through (39), we can clarify their

characteristics at the same time.

First, because of oy 2 0 it must apply that ﬁ -1, where ﬁ =+ -1 is usually
subject to Vn o -+ 0.

)

Moreover, because of P, 2 O it must also apply that Y 2 _1. According to

1
Eq. (36), this condition in the h, Tjl-plane defines a boundary curve which is

dependent on 90, As and go, respectively Sq5e This curve is determined by

73

/100

/101



- [
__ﬁ,fz t Zham B - & S
Cr o, « 28— Lo s 8,+ £ "9, sin 0,05 (42a)
Any discussion of the curves T (h; 90, As, EO) which would allow for the
requirement that Y = _1 would lead to an excessively great number of distinc-

tions between different cases, since this boundary curve is relatively com-

plicated. Therefore, the curves N (h; 90, As, EO) to be discussed in this

Section 3.2. shall be treated by analytical means without allowing for the

condition that Y2 ~1.

However, in order to acquire some rapid statements on the profile of Y’, we

shall list some of the results acquired from (36). §’ = 0 is satisfied on the

curve
2 1 + ,Z am G,

2R+ At am O, + —;—Asnw 0, cn'o, (42b)

~3)

Moreover, the relationship %—\?—:('Z"p) is of interest:

3V .85 1 __calo. A (42c)
'3)2 3 5o (1—‘£i/>tm@,,z A
Hence,
3E>0for b > Max (0, - 3/5 sin 0,4 5) (42a)
_ and B < Min (O, - 3/5 sin 6,4 s)
%\:Z:/<O for Min (0; - 3/5 sin OoAs)<h<Max
Another interesting relationship is Y (7=0, h+ 0)
Vv 1
Y(7-0,8+0) =-3—5 (4 27+ Ramo) (42e)

This can be used to calculate the value of Y at a zero point h £ O of

T(h). In addition, we calculate

Y (h=0,5%0) =- A—; co’ O (L2f)

Finally, we can transform Eq. (36) with the aid of Eq. (34):

v 51 5 3 R~ 385 (b0 4300 )7 +Leo30) )
Y—,s__',l. + 13 - (L2g)
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This relationship represents a generalization of the Hugoniot relation for
a shock wave in gas dynamics which is defined exactly by the first term
5 ﬁ/(B-ﬁ). In the case where As = O, we obtain Eq. (77) of Bazer and Ericson
[1958] with ¥ = 5/3. From this we can see immediately that in the case of a
random compressive shock wave in an isotropic plasma with finite go a given
density ratio expressed by 1 is always associated with a greater relative
pressure jump Y than the corresponding shock wave in gas dynamics. In the case

of the anisotropic plasma this relationship applies only to part of the shock

wave solutions.

These relationships make it considerably easier to establish the profile

of Y(h).

Another condition that must be taken into consideration for an investigation
of ﬁ(h) is given by Egs. (37) through (39). The radicand of the roots occurring

there must not be negative. This requires that

(n - Fsino)/a > 0

This requirement excludes certain regions of the h, ﬁ-plane that are marked 4}04

by the absence of shading in Figure 7. In the following discussion of ﬁ(h)

we _shall allow for the condition that (h - N sin eo) / h 2 0. Moreover, the

curve in the h, ﬁ_plane on which it applies that V = b is of interest

n,l n,1’
for the enumeration of the characteristics of different shock wave types. In

general, it applies for a curve having a certain value of Vn 1/bn 1 that:
? k]
7 L
3, b g 105
= 5 am O
2
2 L L
:—LAS(‘)'U + 1— ™ na g
\V,m A O,
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7//// permissible region
0

3sin G
h

Figure 7. Permissible regions of_the h, 7ll-plane,
based on the condition that (h - 1 sin 90)/5 z 0.

Consequently, we are dealing with strajght lines in the h, T-plane. Con-

sequently, it applies for the line with Vh l/b = 1 that 7| = -3/5 As. Hence,

s n,l
Vn 1 is greater than bn 1 when it applies that 7 > -3/5 As and h > 0, and when
- - L]
N <« -3/5 As and h €< O are satisfied. This of course excludes the forbidden

regions. Vn 1 < bn 1 applies in the other permissible regions.
b ]

Figures 10 through 23, representing the step functions for §O = 1.0,
8. = 45°, and for §

o) 0
shall serve to illustrate the discussion in this chapter. The conditions that

= 0.5, 90 = 20° and three different ratios P,/P, each,

T2 -1, Y= -1 and that (h - 1 sin 90)/5 2 0 are satisfied in these figures.

We shall start out with a discussion of fj(h; 90, As, EO). Eq. (34) shows

that a given value of h is associated either with no real value of ﬁ or with

two real values. On the other hand, any value of T is associated either with

one or with three real values of h-

In the case of large values of h, Eq. (35) will yield the asymptotic

formula

7:.@[%0@.9.;;5[/1:»739.“2—}'] (43)

76

/105



Consequently, in the case where 6 < ecrit=arc sin y¥24/25 = 78.5°, the root /106
expression in Eq. (35) will become imaginary if ‘hl is adequately great. In

the case of 60 Z 6 the first term of the curly bracket is entirely pre-

)
dominant, while ﬁ ir;: applies where h #* «, and ﬁ ? - where h * —», The
second case is not permissible because of ﬁ 2 -1, Moreover, the requirement
that all other step functions must be real, too, implies that the case where
ﬁ -+ +o is impossible. In order to demonstrate this, we shall again consider
the root expression occurring in Egqs. (37) through (39). The radicand reads
(h - ﬁ sin 90)/5. It must not become negative. The permissible regions in
this respect in the ﬁ, h-plane are represented in Figure 7 for the case where
-1 s ﬁ < + 3 only. Of course, the permissible regions with positive

(h - ﬁ sin 90)/5 extend into the infinite just as the nonshaded forbidden
regions do. Now we can see that the asymptotic boundary curve of ﬁ for h * =
as defined by Eq. (43) is located within the forbidden region under any value

of 80 = 90 Consequently, h has an upper and lower limit under any angle.

rit°®
Now, we can even show that ﬁ < 3 must apply. For this purpose, we start

out by proving that ﬁ + +o is not possible for finite values of h, either,

since h would then be located within the forbidden region. According to Eq. (35),

it will apply for numerators other than zero that ﬁ 2 +o when h hp = 3 sin

5 - i h+h = i ° 5. h >
eoso 3/5 sin OOAS or when h hp 3 sin 60 s Because of hp O where

[0}
Oo £ 0 and go £ 0, the pole will always be located within the forbidden region.

The cases where 90 2 0 and §_ - O are limiting cases which we shall consider

0]
later.
Now, where does the branch of curve T(h) lead which is inbound from the

infinite? In the case where 60 2z 8 it could run along one of the curves

PR
defined by Eq. (43), disappearing a;:;i in the infinite without departing

from the forbidden region. However, our special interest is devoted to the

points where the boundary lines of the forbidden region are intersected or

only touched by curves. First, we substitute ﬁ = h/sin 60 in Eq. (34) and /107

stipulate that 90 £ 90°.

Three solutions are obtained:
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‘KY,.z 3om O, ) ;Z-‘—‘3

5 . (44)
Avn 9o'2“ﬂt=0 for ,Q.Yz=—~_;_dsavn@,’;i=_%,gs

h = O applies at the point where h = hY , Since this is the intersection
2 - =
of the boundary lines. Now we seek the second value of T where h = Q0. Based

on Eq. (34), we obtain:

1=-3 8¢

._ (45)
f=0 for
~AS_(6— 345 O, — 1cx*0))

= =

10 s

Even in the most disadvantageous case, both values of ﬁ are located far
below 3. Consequently, a curve point can never be located on the boundary
line h = O when ﬂ > 3, According to Egq. (44), there is no curve point on the
straight line 7 = h/sin 90 when ﬁ > 3. The point ﬁ =3, h = 3 sin 90 is the
only curve point on the boundary line when T = 3. Now, if we substitute

M =+ 3 in Eq. (34), we will obtain the following when we solve the system with

respect to h:

e =Lt sea (eaed e Lueoa) g
£,.2(1=+3):—5—/>vwaAS_ 75 A otz .

These two zero points of ﬁ(h) = 3 are complex for the permissible region
of the As, go-plane. The straight line T = 3, consequently, is intersected

at only one point in every instance.

After these preliminary steps, we are now ready to show that ﬁ > 3 is
impossible, First, the region between h = 0 and ﬁ = h/sin 90 is forbidden
because of (h - ﬁ sin 90)/5 < 0. There are no curve points on the boundary
lines h = 0 and ﬁ = 3 as well as ﬁ = h/sin 90, except for h = 3 sin 90, that
would be compatible with Eq. (34) when T 2 3. Since there is no pole in the

region ﬁ > 3, h < 0, while it is impossible for any curve branch to be in-

bound from infinity because of Eq. (43), this region could contain a closed
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curve only. Assuming that there is such a curve, the mean of two ﬁ-values
under a certain value of h on this curve would have to be greater than three.

If we write Eq. (34) in the form

agz’ +by +c=0 (47)

it would have to apply, therefore, that -b/2a > 3. If we use the Eq. (34) to
define a and b, we can easily show that the curve -b/2a (h) is certainly not
located within the region under consideration here. Consequently, no part of
the curves described by Eq. (3%) can be located within this region. There re-
mains only the region where ﬁ > 3 and h > ﬁ sin 90, that is to the right of

ﬁ = h/sin eo. No part of any curve can extend from infinity into this region,
because of Eq. (43). Nor is it possible, except via the point ﬁ =3, h = 3 sin 901}09
that any curve branch could reach this region by passing through the boundary
lines ﬁ = +3 and ﬁ = h/sin OO. It is impossible for any curve branch to reach
this region via ﬁ = 3, h = 3 sin 60 because in that case it could depart from
this region only via 7 = 3, h = 3 sin 90, and because Eq. (46) states that,
where h = 3 sin GO, N = 3, it is never possible for a double root of Eq. (34)
to be oriented other than with a vertical tangent. As a result, we obtain the

important inequation

—w & d_%(gsgb;n 0, 7-3) <0
. (48)
or
A o AT g 3,m0. 5=3) S+ ®
At'/n@oé ﬂ(j 3a0m , 2 )

This formula states, in other words, that the curve branch incoming from
ﬁ < 3 and passing through ﬁ =3, h =3 sin 90 must be originating in the per-
missible region. Therefore, the only remaining possibility for the region
where ﬁ > 3 and h > ﬁ sin 90 is that of a closed curve. That such a curve is
impossible can be shown by means of Vieta's root theorem. For this purpose,
we rewrite Eq. (34) in order to obtain a determining equation for h under a

given value of ﬁ:
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£

e B (2am 0, (1= £ 85)— 5 £ am @) (49)

+ B (% 2~ 9(1— 5.)7 - z_lfas cos? 61)

. = 2
- 2 Am G°<§o— —;7 As)'l _—}):AS Avn roualeoz__—_o

let ﬁ be a certain value on the assumed closed curve, and hl’ h2, h3 the
associated h-values where hl < h2 < h3. hl must be located in the forbidden
region. Since the curve is closed, it is impossible that only one real root
exists. Consequently, all the roots must be real. According to Vieta's root

theorem it applies that
) . = am & S5 -8+ 2 As
g v hy Ry T ° 3'2 £

Consequently,

(Ao+ 2asom @) +(f,—Trm @) + (b~ T am©,)

= oum O, {w——%fz—z +AS}

Since there are no curve points in existence where ﬁ > 3 and h £ 0, the
first round bracket must be positive. The two other round brackets must be
positive, too, since they are supposed to be located on the closed curve in
the region where h > ﬁ sin 60. Consequently, the entire left-hand side must
be positive. On the other hand, because of ﬁ > 3 and As = 5/3 the left-hand
side is certain to be negative and smaller than -4/3 sin 60. This is a con-
tradiction. It is impossible that a closed curve could exist in the region

under consideration.

Hence, we have shown that 7 > 3 is impossible because either the curve

N(h) is located within the forbidden region or because there is no solution of

/110

Eq. (34) in the permissible regions. Moreover, Eqs. (36) through (39) show that /111

i i = i M = } = = V =
it applies for h = 3 sin 90, N = 3 that +oo, Vn,l/bn,l +oo, n,O/bn,O +eo,

_ = 0.
[un]/bn,l + o, and that [uy]/bn,l
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The next step is to vary the magnitudes As, §. and 60 and to determine

(0]
when the curve branch passing through h = 3 sin 90, N = 3 will have a vertical
tangent. Obviously, this corresponds to the transition of the regions of the

two inequalities (48).

According to Eq. (47), the following applies to dﬁ/dh:

+ c!

b

d
d

Ny

|

-2 ’ —_ '
5°a + 76b
952 + (50)

>

The prime marks denote derivatives with respect to h. Consequently, dﬁ/dh = +o®
shall apply at the point where h = 3 sin 60, T = 3. Hence, we obtain the
equation 6.a(h = 3 sin 90) + n(h = 3 sin 60) = 0. This equation will yield

-

3, = 1—%/3(/712@, + as (4 + F5gamta) (51a)

o

This relationship is represented as a dotted curve in Figure 6 where it is

plotted for different values of 60. Together with Eq. (48) we obtain, moreover,

d‘ _ _ .
—c0 < d_p?(7_=3)p\—3/>lm90) < 0

(51b)
where
= £ -2 4 1 2
5o<1‘§’>‘”’é’»+‘35(§ g o 9,)
and
(51c) /112
4 diy, ..
55, < (03 Re3mm0) £ v e
where
= 5 .2 4 4 -2
52 4~ et as(F + A a,)

Similar to Bazer and Ericson [1958], we shall use these inequalities in

Section 2.3. in order to classify the Mf shock waves.

Now, we shall clarify the further progress of the curve branch passing
through h = 3 sin 60 and ﬁ = 3 in the case where T < 3. For this purpose, we

start out by defining the zero points of ﬁ. We substitute T = O in Eq. (34%)

and obtain:
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g=o0

where

. ) (52)
L., gy:* =0 >
,291 =—~A\m@f— —As)—‘//)\mg (’f — —AS +~A‘ CG:)Q

bos = ~pn0lt= )+ e (1~ £ o5 + Los core,

Here it applies that h03 = h02. We can see that in the case where As > O

h03 > hOl = 0> h02 and where As < O, it applies that h02 < h03 < hOl = 0,
provided we make the additional assumption that 90 < 90°. The zero points

depend only on 60 and on the anisotropy parameter As. In the case where

As = 0, it applies simply that hOl = 0, h02 = -2 sin 60 and that h03 = O. /113
Consequently, a double zero point is located where h = 0. Moreover, we deter-

mine the ﬁ-values for h = O:

(53a)

Now, what is the slope of the curve branch where it passes through h =0,

N = 0? Based on Eq. (50), we find that

4T (g0 5-0) = — A
T om0 =— 2 (53b)

This result is not contradicted by the result obtained for As = O. For,
if we allow As to shift toward zero, the vicinity of h = O, ﬁ = O, where the
behavior described by (53b) is predominant will become continuously smaller,
while at some distance from h = O, ﬁ = 0, the behavior applicable to As = O
already becomes visible, where two derivatives exist for h = O, ﬁ = O because

two curve branches pass through the point.
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Using the Egs. (52) and (53), we can now describe the curve profile in
the region where O = ﬁ < 3, h> 0. Only one point in addition to ﬁ =+ 3,
h = 3 sin 60 is located on the boundary of this region. Mereover, if we apply
Vieta's root theorem to Eq. (49}, we will find that in the case where 3 2 T > ﬁoz 114
only a value h > O can exist in the permissible region defined by Figure 7
where (h - ﬁ sin GO)/ﬁ > 0, in addition to a value fl. 1In the case where T < ﬁbz,

no value or two values of h 2 O can exist im addition to a value ﬁ. Of course,

due 'f:or"F—T‘2 0O this case can occur only where As < O,

Consequently, we have the following curve profile. In the case where
As < 0 and where the inequation (5lc) is applicable, the curve T(h) will proceed
Y, = -3/5 As sin Ob, M=-3/5As toh =0, 7 = n02'

A minimum of ﬁ can occur. In the case where As < O and where the inequation (51b)

from h = 3 sin 60, NM=3viah

is applicable, h will initially rise from h = 3 sin 60, N = 3 passing through
a maximum. Subsequently, passing through hYg’ M = -3/5 As and to h = O, ﬂoz,
the boundary of the region is reached again. In the case where As > 0O, the

curve proceeds from h = 3 sin eO’ ﬁ = 3 via h N = 0. Extremes of h can occur

03’
on the way.

The region where -1 < ﬁ < 0 and where h > O shall be discussed next. In
conjunction with Eq. (49), Vieta's root theorem will show that one, and only
one, point exists where h > 0O and ﬁ = ~}l. Moreover, Vieta's root theorem when

applied to Eq. (49) will show that, where As > O, any one

z
_ 1 con B, As _ =
9 <—5—. %-kj-AS = 202
T

is associated with one, and only one, h-value where h > 0. In the case where
n> ﬁoz, one value of ﬁ is associated with no value of h or with two values of

h.

Consequently, the following curve profiles are obtained. Two possibilities
exist in the case where As > O. 1In the first of these, the curve branch

originating from h__, ﬁ = O departs from the region via the point where ﬁ = =1. /115

03 -
Moreover, a curve branch exists that originates from h = 0, T = O, achieves a
maximum point at h, and departs from the region via h = O, nOZ' In the second
03’ T = O passes through a

and departs from the region via the point

possibility, the curve branch originating from h
minimum at point ﬁ where ﬁ = ﬁoz,
where h = O, ﬁ = 0. A second branch proceeds from h = O, ﬁoz to the point where
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N = -1. The transition from one case to the other is made via two intersecting
curve branches. This requires that a relationship between 50, As, and 90 is
satisfied. In the case where As < O, one curve branch proceeds monotonely
from h = O, ﬁ = O to a point where ﬁ = ~1., That part of this curve branch
where h < -3/5 As_sin eo is excluded, according to Figure 7, because it must

apply that da(h -N sin eo)/ﬁ > 0o.

Now, we shall study the region where h < 0. We had already obtained the
following results for the boundaries of this region. According to Eq. (43),
it is impossible for any curve branch to be incoming from infinity between
points ﬁ = -1 and ﬁ = +3. There is no curve point on the straight line ﬁ = +3
when h < 0. There are two curve points on the vertical straight line where
h = 0, one at point ﬁOZ according to Eq. (53a), and the other at point ﬁ = 0.
In the latter case, the slope will always be dl}/dh = -2/sin eo. In the case
where As = O, these two curve points will coincide with h = O so that two curve
branches will pass through h = 0, ﬁ = O. The straight line ﬁ = -1 can contain
one or two curve points when h < O in the case where As 2 0, this being hoz,
unless it applies at the same time that eo = 0° and As = 0. 1In the case where

h

As < O and where GO # 90°, we have two zero points h02 < 03 < O or none at all.

In the case where As > O we obtain one curve branch when h < 0. This
branch starts out with the slope dﬁ/dh = -2/ sin 60 at point h = O, ﬁ =0,
achieves a maximum in 7], and then passes through h = hoz, N = O. Subsequently,
there are two possibilities: in the first case, the curve branch passes
through a minimum in ﬁ and terminates at point h = O, ﬁ = ﬁoz. In the second
possible case, the curve branch originating from h = hoz, N = O will terminate
on the straight line where ﬁ = -1l. Another curve branch starts closer to the

straight line h = O where T = -1, and terminates where h = 0, T = ﬁoz.

Of course, there must be a minimum in h or a maximum in fhl. We designate
this hmin' In the case of a large region of possible values of Oo, As, and

go, this minimum where dh/dl) = O is located between ﬁ =-1land T = +3. In

particular, the minimum can be located above or below the h-axis. In the

boundary case it will be located near h = h In that case, Eqs. (47) and

02°

(50) require that b = O and ¢ = O apply at the same time. We obtain the following

condition for the applicability of dh/dﬁ = O in the case where h = hOZ’ ﬁ = O:

8L
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3 " STz y N 1 (Sll:a)
{ . ‘2 1
= 13m0, o0t — 5 83)+ £ 4s o0
In particular, we find that
—w<7 ¢ 0 where =40z, 7= 0 (54b)
where - 3 . .
S, £ 1 - ?‘Z‘A%Q‘_(f~ - AS)
sy e .
143 2 4 2 1
- 1‘7/"’"90%‘”‘&(1— ~5~A5)+ -?—_ AS coo” O,
(54c) /117

0£5 <« ® where A= Q“}

Pl
i
Q

where
> 1— 7 am™0, (1~ as)

13 i O Yaim® {1— 2 2 4 20
_rinm a |fam 9,(—-3—45)+§_-AS con o,

We shall use these relationships for classification later on. The boundary
relation (54a) is represented as dots and dashes in Figure 6, using different

angles.

Finally, we can show that curves other than the curve branches described
above cannot occur in the region h < 0, -1 = ﬁ < 3. Based on what we stated
before, these could be closed curves only. Such a curve would have to satisfy
h < hmin < hoz., Let us assume the existence of such a closed curve. According
to Figure 8, a line drawn from a point A of this curve to the zero point would
intersect the closed curve once again at point B, and the curve passing through
the zero point h = O, ﬁ = O which was described before will be intersected at

at a point C. There must be a point C on the imaginary line because the tangent

placed through h = O, ﬁ = O will intersect the straight line ﬁ = 3 at a point

AR.T 4= % pun e, > gn-n:n
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Therefore, together with points A, B, C and the zero point there will be four
points on the auxiliary line, which is impossible because of Egs.(34) and (49),

respectively. Therefore, another curve cannot exist. Finally, the requirement

that (h - ﬁ sin 90)/h = 0 according to Figure 7 and Eq. (45) means that the

curve branch with 1 2 0 and h > 3/5 As sin 60 is impossible.

Figure 8. Sketch to prove that a closed curve
TN (h) cannot exist where As 2 O in the range h < O.

Let us now turn to the case where As < 0. This is somewhat more compli-

cated than the case where As > O. We start out with the behavior of the curve

branch which passes through the zero point h = 0, f] = 0, and has the slope
dﬁ/dh = -2/sin Oo. In order to study this situation, we first determine the
location of the curve point of the tangent in the zero point which is repre-
sented in Figure 8. As a rule, such a curve point where h £ O must exist
because of the form of Egs. (34) and (49), respectively. We substitute the
tangential equation ﬁ = -2/sin 6, * h in Eq. (34), we obtain

13 c o2
4?\1_‘2 (—3‘ Ao B, *—‘;)
(552)
= 3 I At -4
..’llmm@,(sa— 3 is 4s z e, EAS))
In the boundary case where hT 5 = 0, it applies, except for 90 = O that
3
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Sor=t ¢ 4? Am* 0, (1—  45) +

as (55b)

o

This relationship is shown by a dotted curve in Figure 9 where Eq. (55b)
was also used for eo = 0,

Consequegﬁly, we have the foilowing curve profile: where 50 2 gO,T’ it
applies that | 2 O where h = O, 7] = 0, and the curve which is incoming from
h =0, ﬁ = O continues to increase its slope, reaching a minimum in h, and then
reaches the point where h = O, m= ﬁ62 > 0. In addition, a closed curve or a
curve branch terminating at two points where ﬁ = =1 can exist in the region h < 0.
A sufficient condition for the existence of such a curve is the presence of two

curve points where T = 0 and h < 0, or of the boundary case of one tangent

point. In that case, Eq. (52) demands that sin 290(1 -1/5 As)2 + 4/5 As cos /121

2
90 2 0 be satisfied for the radicand. Consequently, As 2 (As)Crit must apply,
where
(s) =5 {1 — 1 A0, + 7 4g ©. 10
ok = 3 prary 230 (56)
Since (As)crit is independent of Sy the curves As = (As)crit in Figure 6

are vertical lines which are located at the end of the dot-dashed curves that
correspond to Eq. (54a). Of course, the significance of the dot-dashed lines

is the same for As < O as for As > 0. They represent the boundary where hmin
still has a positive or negative Tl. 1In the case of value triplets 00, As, EO

on the dot-dashed boundary curve the slope at point h = h = 0 will be

oz, N =
infinite. Of course, the criterion of infinite slope at the extreme zero point
of TM(h) h,, can be used only where h,, exists as a real number. Consequently,

the dot-dashed lines must terminate at As = (As)crit

such a line in the As, go—plane is remarkable insofar as the closed curve de-

generates into a point where suitable value triplets 60, As, EO exist. There-

fore, this point at the same time represents the point of maximum As on the

« The terminal point of

boundary curve of the region As, EO’ within which it is impossible for closed

curves T(h) with gO 2 EO,T to exist. However, the conditions that EO 2 EO,T
and As 2 (As)crit are merely a sufficient set of conditions for the existence

of a closed curve or of a curve branch that terminates in two points where

N = -1. Moreover, partial areas exist in the region where gO = §O p an
k]

which contain closed curves below or above the h-axis.

d

s < (As)crit
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- p— -t
In the case where 50 < §O o one curve branch with | = -2/sin 90 and /122
-t =

N < O starts at h = 0, I} = 0. When As > (As) this branch passes through

t’
h = hOB’ ﬂ = 0, reaches positive values of ﬂ aga1n after passing through h = h

02’
N = O, passes through h = hT X ﬂ = -2/sin 0 . hT PY and finally reaches the
9

point h = O, ﬂ = ﬂoz Another possibility is that the curve branch terminates

at ﬁ = =1 and that a new curve branch, incoming from ﬁ = -1, passes through

h = ho T =0 and h = Bp 5 T -2/sin 6 hy ,» and reaches the point h =0,

H = nOZ' In the case where As < (As)crit’ one curve starts out from h = O,

9 = 0, reaches a minimum at h hmin < hT,z’ passes Ehroggh h = hT,Z’

N = -2/sin 60 - hT,Z’ and reaches the point h = 0, M = ﬂoz. Moreover, in the
case of §o < §0 @ closed curve profile or a profile cut off at ﬂ = -1 can exist
in addltlon to the curve branch or branches passing through h = 0, M = 0 and

h =0, ﬂ = noz

3.2.2. In the Limiting Cases 90 + 90° and 90 2 0°

To this point of our discussion, we were frequently forced to exclude the
cases where 90 = 0° and 90 = 90° in order to prevent deviations. We shall now
discuss these cases where it is best to generate the shock waves with parallel
magnetic field vector and n-vector by the boundary transition So - 0° and the
shock waves with vertically oriented H-vector and n-vector by the boundary
transition 90 -+ 90°., In both cases, the effect of anisotropy is only small be-

cause the pressure tensor components pyx and ny disappear.

We start out with 90 = 90°., In the h, T-plane, we have a straight line

passing from h = -1, ﬁ = -1 to h = 3, ﬁ = 3.
M =nh (57a)
and the curve /123
F=2p 2 20-% 49
27 p - 3(5—+as) (57b)
The latter starts at h=-u/3+\16/9 + 45, , 7 =-1 passes through
h = 0, ﬁ = O with a slope of -2, reaches a maximum, passes through point h = -2,
ﬁ = O and finally arrives the point h = - 4/3 —-V16/9-+4-§; y 7= -

In the case of ?, we obtain an indefinite expression of the form 0/0 for

90 = 90° if we use Eq. (36). 1In the case of the boundary transition 00 - 90°,
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we obtain the following for §:
2° ds

_ 5 A + s + 5.—5;(44‘42)

N A

I

for ﬁ = h. (57¢)

Since b = O where 90 = 90°, it follows from Eqs. (37) and (38) that the

curve branch (57b) represents special tangential discontinuities with Vh =

1
b
Vn’o = [un] = 0 and ~ £ ~ 1/2
[u,] = b, ﬂ(——i"_ )
(1+75) 4
where [H.{
by= e
4T p,
Moreover, it applies that [124
Hl
+ X 0
[p + 2]
The following applies to the velocities of branch (57a), using the
reference velocity bo: %
+4
\/1”:\/71,0:50 Sn+1f'£/(*%§‘4,£_
1R (i— %) (1+4) (57d)
2 As 1+ ‘%
fwl=—-b, .2 Jo_ﬁ“_g(_f ¢ tF Tz
(1— %) (1+ 4) (57e)
[u]=o (57¢)

Now we shall discuss the shock wave solutions that result from the boundary
transition 90 - 0°., In the h, ﬁ-plane, these boundary curves are generally
composed of pieces of the T-axis and that part of the ellipse

= 2
(T - FU-%) 3 =2

25y S (1-5)+

s, 3 AS (58a)

4t
5
where ﬁ z _1. 1In the individual cases of boundary transitions, we must keep the /125
condition (h - ﬁ sin GO)/h in mind.

We can give the parts with h = O the designation G as a generalization

St

90




e M R |

5

of the collision relationships for shock waves in gas dynamics. The parts with
h # O on the ellipse must be considered switch-on shock waves Sw (for the
English switch-on). The other jump functions of the Sw-parts can be calculated
directly with the aid of Egs. (36) through (39). The GSt—parts require the

solution of indefinite expressions. We obtain

~ 5_ 3 As 4 4s
\T/=———A—s- + f— (2+%AS) ('Z_ i _S‘;Z:Ls;__ (58b)
S, 3 ——;—:224.72(1——517453)4._3_As
The other jump functions read
\/41,1 - \/fn,o (4+;Z.)— 4 (58¢)
b'n"f b'n‘o
1,
/)
-~ 2 - 4 2
_ rZZ(Sa*’?AS)-J- %As(%-—éAs—jz)Q__E@S)
15700 70~ Fa) r300)
Lu.] _V,
T =1 (58d)
"t -n'd
{58e)
M:O >oe
-
According to Eq. (58a), an Sw-solution will not exist when /126
21—y v bas < 0
9 5

This holds true within the parabola

. 2
AS = — 1—85;(1" S.) £ 0

whose apex is located in the As, go-plane at As = O, ;O = 1, and which opens to
the left. At least part of the ellipse exists outside the inside area of the

parabola in the As, go—diagram, in the region -1 < T < +3 of the h, T-plane.

> 1,

The center of the ellipse for 1,6 = 3/2(1 - go) below the h-axis when S

M (0]
and above it when go < 1. In the case where As > O, intersections of the

ellipse with the h-axis exist which merge into a tangent point in the boundary
case where As = O. 1In the case where As < O, the ellipses are located either

above or below the h-axis. The extremes of T on the ellipse within -1 < T £ +3
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are designated ﬁmax and nmin

In addition to that part of the ellipse where T| 2 -1, we usually have parts
We shall compile

of the N-axis as GSt
the results for the GSt

sections can overlap.

result from curves with h £ 0 and with h 2 O.

-parts of the boundary curves for 90 -+ 0°,
-parts in tabular form, where the individual partial

a + sign:
TABLE L.
n [0s] _Additional conditions
= = EE A ___Z__
S, £ 90'1.(9°->o)— T
+0P0
—S_:o .>_ EO.T <90'_7 O‘)
Tmin 2 Tog
olr0
:§‘0 > -;c.-r
imfn _‘_<.. —'Zo:,
:Sxo < _E-"-
-0{>0
=$=, = E:o,-r
'_Z-ﬂ*m. 2 ?DL
-0|>0 _
E:, = E:o,‘r'
Ton £ To2
o< &, 4 1 — ——g—AS
+0|<L0 = So. = 75

92

A distinction must be made between the GSt
We designate this by a - or by

Gt .~ pa,r_té
Tmax < 77 & +3

N
o3y

|
[NEEEN

iN

o3y

N

sl 4744-‘3

Fmax % <
Min ( ?‘vw.n/ 2_01 ) = 2_
< Max (2—.-..", J 2—01)

_1_;4__]2“ < +32: 4s

-parts that

(RN
[
w

A
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TABLE 4 (continued)

~§>AS Additional conditions Ggy -parts o
Tor <« 7 £ +3
1
. —]]-_ga £ 5, &« 1+ ] -2£ as
+0]<o0] 1 7% 0 i5 _45_2‘¢+.{_4;.
< s %
ZTos 4 7 2« +3
g 3 5 2 Af.
voleo 1 RO 5 tret 7 ¢ %
-1 £ 7 4 Dmin
—_ - Z—"J- ES ﬁ < Emax
0 £ 8 4 St _
-l <o o < 7 e Qmin
= = g ' — — —_
So, 7 & S, % 1~V—-%_ as Lmin £ 7 £ Zmax
2—02 ES 7mi»1. g = )2— < ?_0)‘
- 0|40 ~ _
§a‘1‘ 4 <. < 4"— —%—AS ZO.Z e 7 £ 2 max
;Z—a.g 2 7 oin °© £ 2 = Znin
_E z - 0 £ 7 2 Zor
~0|<0| 1 -l <% £ 1 + 54s
o é i < Z—ot
_ol<o 1 +Y—22s <« S, _ o
| 0 15 Zmi'n. éZ P Zmax
B

The results compiled in Table 4 are useful in conjunction with Figures 6

and 7 where it is desired to make a rapid determination of the approximate

profile of a shock wave curve for small angles.

The limiting case where As » O was mentioned briefly once before, in

conjunction with the behavior near h = 0, T = O.

Since the results of Bazer

and Ericson [1958] are available, we shall dispense with a special discussion
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here. Formulas 35 through 39 merge into the formulas of Bazer and Ericson with-

out complications.

3.2.3. Collinear Alfven Shock Waves

In Para. 2.5.2., we studied Alfvén shock waves that are not collinear
as a rule but can be collinear. We had seen that the rotational angle of the
transverse field Etr is not contained in the conservation equations. Therefore,
we can use the algebraically simple case of the collinear Alfvén shock wave
in order to study some additional characteristics of this shock wave type. An
Alfvén shock wave with isotropic pressure in its rear will be present, and only
then, when it applies that ﬁ = =3/5 As and that [Etr] Z 0. We substitute
N = -3/5 As in Eq. (49) and obtain one or three real solutions for h. The

solution that h = O is forbidden because of [uy] = O, The two other solutions

read:

y IO, —As(L=ns + £ oo~ 6T
ﬁA.1=~ pm @, + 1\ »n” B, A5(25A54f¢m9,, —5:55}

(59a)
(= 0 pint0, —as{Ease Lo - 64
A.z——AW . - 0 35 '5—: © Ty
These solutions will exist only when the radicand of the root is not
negative. We obtain the following boundary curve in the As, go-plane:
1 5 oam' 6, (59b)

. y
Am QJ- ?AS— z __AS—

4
3

This function SO, 1i

for different values of 90. Alfvén shock waves are possible when it applies

m(As, 90) is represented by a dotted curve in Figure 9

> s > 8 < 0 s <5 .
that As 0 and 5, SO,lim or that As and 55 sO,lim
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The numerals at the curves indicate P,/P,.
The values of B, /P, = 0.6, 1.0 and 11.0
correspond to the values of As = -0.5, 0, 5/3.
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The numerals at the curves indicate P,/P,.

The values of P,/P, = 0.667, 1.0 and 1000.0
correspond to the values of As = -0.2061, 1.0 and
+0.8656.
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The numerals at the curves indicate P,/P,.

The values of B, /P, = 0.667, 1.0 and 1000.0
correspond to the values of As = -0.2061, 1.0 and
+0.8656.
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The numerals at the curves indicate P;/Pl.
The values of P,/P, = 0.667, 1.0 and 1000.0
correspond to the values of As = -0.2061, 1.0 and
+0.8656.
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3.3. Classification and Physical Discussion
of Collinear Shock Waves

3.3.1. Classification System

We shall implement a classification of shock waves in this section. The
guiding principle shall be that any definition of a shock wave type for As * O
will transform into the corresponding definition by Bazer and Ericson [1958].
Moreover, each shock wave type shall differ markedly from all the other types.

We shall define six types of shock waves. The criteria for their occurrence
are the following:

TABLE 5.

i S, =1 - 5/2 sin%0_+ As(1/3 + 1/15 sin®

90)
(according to inequality 5lc)

u{2 5, < 1 - 5/2 sin®o_+ As(1/3 + 1/15 sin®6,)

(according to inequality 51b)
M(q) E; >1 - 7/12 sin290(1-4/5A s)-13/12 sin 9 -
2 2 2
v‘Y;in 90(1—4/5 4s)< + 4/5 As cos“0

(according to inequality 5ib)
and As 2 (As)_ ;. (according to Eq. (56)
(2) = L2 _ . .
Ms 30,4 1 — 7/12 sin 90(1—1/5 As)=13/12 sin 9,
2 2 B
'V;in 8,(1-4/5 4s)° + 4/5 As cos“0,

(according to inequality 5kc)

and A4s> (As)..;, (according to Eq. (56)

Mg3) ds < (B8) 54 (according to Eq. (56)
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Some of the individual shock wave types are mutually exclusive because any
one triplet of values 6 , s , A is associated with only one M_.shock wave and
oo W, @ . (1) (2§
one Ms-shock wave, The types in Mf , Mf , Mé , and Mé

the corresponding types by Bazer and Ericson [1958] when As - O.

transform into
Ms(3)_type

shock waves exist only in the case of sufficiently strong negative anisotropy.

We shall now describe the individual shock wave types, using primarily

. Py, - P
physical aspects. We shall use not only As = 5/3 —%————k-but also the ratio

H- /4T
0/4
P,/P, as the measure of antropy.

3.3.2. yf-Type Shock Waves

We shall start out by considering the Mf-type shock waves. These are de-

fined as the shock wave solutions where h 2 0. The point where h = G, T

i
Q

is excluded only for As < 0. Consequently, the curve segments where h = O
are Mf—type shock waves. It applies generally for this shock wave type, with
the exception of the case when h = O, that the field lines of the magnetic
field are '"broken off" by the shock wave normal. The quantity of the magnetic
field behind the shock wave,‘§1|, is always greater than it is in fromt of the
shock wave, with the exception of h = 0. The transverse part of the magnetic
field, H r? retains its orientation. Currents are required in order to change

the magnetic field. Their area current density according to the geometry

shown in Figure 2 is
_ 2 M4l s
AF EX 3 -

where é_is the unit vector in the z-direction. In the case of the Mf—type shock
waves the force j x H (since H is equal to E) will cause a retardation of the
velocity component u afd an acceleration of uy. This means that expansive
shock waves of type Mf(ﬂ £ 0) where the plasma on the average accelerates

(V'n’1 = Vn O) must be accelerated by the pressure P, - P, if it applies that

h > O. This will result in Y < O where h > O even in the case of weakly com-
pressive shock waves. For instance, we can see in Figures 17 and 18 that the
shock wave with P, /P, = 1000 has a Y = 0 only for T = 0.56. Y in Figure 11 will
become zero at a ratio P"/P_L = 11.0 only if it already applies that ﬁ = +0.53

according to Figure 10.
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The index f for '"fast" applied to the Mf-type shock waves implies anothezx
important characteristic. In the case where ﬁ 2 _.3/5 As and h = max(-3/5 As

sin © 0) the velocity components Vn and V are greater than or at most

o’ 1 n,0
equal to the associated generalized Alfvén wave velocities in the direction of

n, which is Bn,l = bn,l and Bn,o. In this sense they are fast. Consequently,

we can see that even weakly expansive Mf_type shock waves can be fast when there

is positive anisotropy. If we introduce the classical entropy condition in the

form
3 53

1og(—E‘—) (5;:) > 0

and implement the boundary transition As - 0, we will find in agreement with

Bazer and Ericson [1958] that the velocity component Vh’o of the Mf_type shock
waves is greater than or at least equal to the velocity of fast magnetoacoustical
waves in the n-direction on the front side. Now, in the anisotropic case, we

can state that the generally ipplicable entropy condition prefers large compression
ratjos 1 + ﬁ = pl/po. Therefore, it is also meaningful from the point of the /148
boundary case where As = 0, that classification by velocities be made using the
region ﬁ 2 .3/5 As and not ﬁ < -3/5 As. Another characteristic is that the
velocity jump [un] can grow beyond all bounds (?* = ®) only in the case of the

Mf-type shock waves.

Moreover, the region ﬁ = _3/5 As is interesting because it includes the
shock waves which develop in the event of very strong to infinitely strong

perturbations where the relative pressure jump Y, the velocities Vn v

1’ 'n,o0’
~ - ’ L]
[un], and the magnitude -[H] can grow without bound. Y = o, Vn 1= %
-~ - k]
Vn 0= [un} = - and ~-[H] = = are reached when T = +3, which also describes
9

the maximum density jump of Py = 0y = 3 that can take place. T = +3

s}
corresponds to the known boundary value og 2/(y - 1) for a medium where the ratio
between the specific heat values in the rear of the shock wave is v = 5/3. This
boundary value of ﬁ = +3 is independent of go, As and 60 because, in the case of
infinitely strong shock waves, the flow energy of the plasma in front of the
shock wave is infinitely great compared to the thermal energy and the magnetic
field energy whose characteristics are reflected by this triplet of values.

Since the ratio of thermal energy to flow energy in the rear of the shock wave

tends toward a finite boundary value if ﬁ <+ +3, the characteristics of the
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special interrelationship existing between pressure and energy are contained in

the boundary value ﬁ = 2/(y -1).

On the other hand, the magnetic field in the rear of the shock wave remains
finite. In the case where ﬁ * +3, it applies that h @ 3 sin 90. In that case,
the definition used for h requires that Hy,l =4 Hy,O applies to the transverse
components of the magnetic field. Moreover, since [Hn] = 0, we encounter the
greatest magnetic energy demsity ratio §i/8ﬂ/§g/8ﬂ of 16 for infinitely strong

shock waves in the case where SO = 90° , that is for transverse shock waves.

The change in the transverse velocity component where ﬁ - +3 will decrease
continuously so that [uy] = O applies to ﬁ = +3. This is due to the fact that,
where ﬁ - +3, the mass which must be accelerated per unit of time by the trans-
verse component of the force j x H and of the anisotropy force, continues to

increase so that [uy] -+ O applies to the velocity change.

The jump function branch which, in the case where ﬁ =+ +3, leads to Y -+ +e0,
Vh + o, etc., can be seen from Figures 10 through 23 where it is shown for two
different triplets of values and for the different step functions. We can
observe a quite variable behavior. In the case where 50 = 1.0 and 90 = 45°

represented in Figures 10 through 16, ﬁ, §, Vn 1° Vh o and -[A] increase, while
1 3
+[un],‘[uy]| decrease monotonely  with increasing h, starting from a certain

value of h and ending at h = 3 sin 90. In Figures 17 through 23 where so = 0.5

and 90 = 20°, a value of N, . =1.25> 53 sin 9, = 1.025 is reached. From that
point, ﬁ, ?, Vn,l’ Vn,O and -[H] increase, while [un],l[uy]‘ decrease with
decreasing h until finally, at point h = 3 sin 90, + 3, + ® + ®, + ©, + ©, as

well as - o and O are reached consecutively. These two cases characterize the

2
difference between types Mf(l) and Mf( ) shock waves, In the case of the Mf(l)_

/149

type shock waves, the slopes dj /dh, d¥/dh, d/an(V, . /b, ), d/dn (V, /b, ), ~ d/an [H]

for h = 3 sin 90, N = +3 are positive, while d/dh (fur]/bnM) and d/dh(ffuy]{/bn,1)

are negative. In the generally applicable case, these signs do not apply to

all values of h along the curve branch. In the case of the Mf(z)-type shock

waves, the slopes at point h = 3 sin 8_, T = +3 have exactly the opposite signs.
(1) (2

The boundaries of types Mf and Mf are represented for different angles by

the dotted curves in Figure 6. This agrees with Figures 10 through 23, where
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we can see that, in the case where 5. = 1.0, 8 _ = 45°, we are dealing with

(0] (o)
Mf(l)-type shock waves, and where ;O = 0.5, 60 = 20°, with Mf(z)_type shock
2
waves, Moreover, we can see from Figure 6 that Mf( )—type shock waves can exist

only where GO,S 39.2°, Reduction of this angle will enlarge the permissible

-plane. If 8 _ and S are maintained constant, we can in-
(0] ( (o) 0o (2)
crease As to move from the Mf -region into the M.f -region, unless we reach
(1)

the instability limit first, or unless Py = O. In any event, only Mf ~-type

shock waves exist above s _ = 14/9., 1In the case of very small values of s

o o’
we have Mf(z)-type shock waves where 60 < 39.2°, and Mf(l)-type shock waves

region in the As, §

where 90 > 39.2°,

In the case of the M_-type shock waves, we studied in special detail the
behavior where ﬁ -+ +3. Among other aspects there, we had V o -+ +o and

2

Vn 1 - +w, When there is positive anisotropy, another possibility for Mf-type
9

shock waves to reach Vn 0 -+ +o or Vh 1 -+ +x exists. The only requirement is

2 9 , -
that -2/3 As/so cos eo 2 _1 be satisfied. In that case, where h # O and 1 2 0O,
we obtain Y - -2/3 As/so c0529 [un] < 0, [uy] -+ 0 and [ﬁ] -+ finite value.

O’
with -2/3 As/so cosz 8

Moreover, a finite value is achieved by pOVi,O - plvi,l o°
In the case where As is too small, the isotropy-producing processes will become
too weak so that the formulas used here will lose their validity near h = O,

ﬁ = O. Here, in the vicinity of h = 0, we have shock waves that are expansive
so that a pressure reduction results. In the case where h - O and ﬁ -+ 0,
respectively, only the pressure reduction and especially the isotropization
remains. These waves are either located on the same curve branch as the
infinitely strong shock waves (cf. Figures 17 through 23) or on a curve branch
that will reach only small values of h (cf. Figures 10 through 16). Moreover,
some of the curve branches can be absent because of Y < _1. However, the
transition between these two possibilities does not correspond to the transition
from Mf(l)—type to Mf(z)-type shock waves. If we discuss the Ms-type shock
waves, we will find a compressive counterpart to these shock waves which are

predominantly anisotropy-destroying only.

In addition to the shock waves just described there can be other Mf-type
shock waves, all of which are expansive so that Y < 0. In the case of positive

anisotropy these start at h = 0 and iﬁi%&==§=—~%»§~ T ﬁ decreases
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monotonely after reaching some maximum. These shock waves do not exist

under the conditions of the examples in Figures 10 through 23 where As > O.
They can exist in the presence of smaller positive anisotropy, as we can see
from the curve segments where P”/P‘ = 1.0 which start out from h = O, ﬁ = O.
Similar shock wave types can also exist in the presence of negative anisotropy,
as in Figures 10 through 13. However, these begin at a point where

h = -3/5 As sin 60.

Examination of the magnitude -[ﬁ] shows that at least partial segments of
all shock wave curves under consideration exist under the specific stipulations
made for -[ﬁ]. Consequently, all the compressive Mf_type shock waves with
negative anisotropy shown in the examples in Figures 10 through 23 can exist.

When there is positive anisotropy with P“/P* = 11.0, the compressive shock waves

with §O = 1.0, GO = 45° can exist where T > +0.27. All Mf-type shock waves
are permissible in the case where §O = 0.5, 90 = 20° and B, /PL = 1000, although

ﬁ is sometimes located very close to -1. This is due to the extreme selection of
P,/Py.

3.3.3. M _-Type Shock Waves

We now turn to the Ms-type shock waves. These represent the shock wave
solutions where h €« 0. In addition we shall also consider the shock wave

where h = O, T = O as being an Mé—type shock wave.

The index s denotes '"slow'" and gescribes the characteristic of Ms-type
shock waves that, in the case where T = -3/5 As, the shock waves are always
slow in the sense of Vn,O < Bn,O and anl < Bn,l' Again, the region of com- /152
pressive and expansive shock waves with T 2 -3/5 As is used for classification
instead of the region where ﬁ < 3/5 As because it is preferred by the generalized
entropy condition, as we can see from Figures 16 and 23. Another characteristic
that justifies the designation slow is the limitation of the velocity jump [un].

This characteristic can be seen from Figures 14 and 21 for the examples where

= 0.5, 6, = 20°.

s = 1.0, 90 = 45° and §

0O 0

In the case of the Mg-type shock waves, 7, §, [uy], -[ﬁ] are limited, too.

The maximum relative density jump is smaller than three.

Hy 1 = Hy 0 applies because the Ms_type shock waves are defined by h < O
9 1

with the one exception where h = O. The definition of h according to the set
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of defining Egqs. (32) means thatl ﬂﬁJ S] ggo| in the region -2 sin 90 < h < 0,
Again, the magnetic field increases when h < -2 sin 60. Using similar reasoning
as used in the case of the Mf-type shock waves, we conclude from these circum-
stances that the velocity component u, of compressive Ng-type shock waves with
-2 sin 90 < h < O must be retarded by a positive Y. Conversely, expansive MS—
type shock waves with h < -2 sin 90 must be accelerated by a negative Y. In the

case where -2 sin 90 < h £ 0, the pressure change P_ - P0 = O occurs in the

1
expansive region, and for h « -2 sin 60 in the compressive region. Moreover,

where ﬁ = O in the case of h = -2 sin 90, it applies that Y = 0. One curve
branch passes through this point when GO = 45°, Finally, we note that the case
where h = - sin 90 corresponds to a switch-off shock wave which, consequently,

is always an Ms-type shock wave,

What are the distinguishing features of the individual shock wave types,

2
Ms(l), Ms( ), and MS(B)? First, we must reiterate that these three types are 4}53

mitually exclusive. In the event that a situation existing in front of the shock

(3)_

wave and described by go, As, 8 _ satisfies the condition As < (As)cr for Ms

o] it
type shock waves, a shock wave without density change cannot exist except for

h = 0., Consequently, the shock wave solutions MS(B)

of Hy without a density change or a change of [un]. This is in contradiction

do not permit any reduction

with the Ms_type shock waves in an isotropic plasma where h = -2 sin 90, ﬁ =0

is a solution. The MS(B)-states are located in the As, go—plane to the left of
the vertical line which passes through the terminal point of the dot-dashed
curve in Figure 6 which is designated by the Oo—value in question. For instance,

(3)—type shock

in the case of 90 = 20° and As < -0.2, we are dealing with Ms
waves. The terminal points of the dot-dashed curves are connected by a solid
line which coincides, within the scope of drawing accuracy, with the continua-
tion of the dotted line designated 0° in the direction of negative As. Since
(As)cr. = -5/6 applies where 8 _~; 42°, MS(B)

it
for 60 < L42°, Examples of Ms(3 -type shock waves are the solutions with h < O

—-type shock waves can exist only

and h = 0, ] = 0 for EO = 0.5, 60 = 20° and ﬁ‘/PL = 0.667 that are represented

in Figures 17 through 23. We can see two curve segments there. A characteristi-

cal feature is the closed curve. If we permit s_ to grow from O.5 on, main-

0
taining 90 and As constant, the closed curve will shrink and will finally disappear.
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If we continue to increase s a new closed curve will grow from a point, and

O,
this curve will contain only expansive shock waves. This curve will grow in
circumference until growing curve segments are cut off by the 7 = -1 line and

Y = -1 line. The boundary lines in the As, §o

certain 60 correspond to the situations where the closed curve degenerate into

-plane which in the case of a

a point, are obtained from the equations

h2 R =0

and /154

d 2
- R) =
Th (h®" R) = O

These boundary lines are curves opening to the left which reach their maxi-

mum As = (As) at the terminal points of the dot-dashed curves in Figure 6.

Consequently,cz;zse terminal points on the solid line in Figure 6 correspond to
the boundary cases of closed curves in the h, ﬁ-plane which are points on the
h-axis that have just stopped being MS(B)—type shock waves. Of course, the
diagrams with the other step functions include corresponding isolated points,
too. In the case where 90 = 0, the boundary line in the As, go-plane can be
stated simply as follows:

wu
A

The dotted boundary curves for Alfvén shock waves in Figure 9 are useful
for the determiﬁation of the topology of the Ms_type shock waves and especially
of the MS(B)-type shock waves. By way of example, we shall consider a shock
wave with 90 = 20° whose As and §0-va1ues are located on the intersection between
the Alfveén shock wave boundary curve and the straight line As = (As)crit’ which
is at s = 0.76 and As = -0.19. In this case a closed curve exists which

o - -
is tangent to the h-axis 7 = O and the straight line M = -3/5 As = + 0.115.

maintaining As < (As) .,
cr

If we permit EO to become smaller than § it

0,1’
which means that we drop below the dotted curve in Figure 9 that is
associated with the angle 60 in question, it can happen that the closed curve 1}55

opens to the right and reaches the ﬁ—axis at h = 0, M=0and h = o, ﬁ = ﬁbz.
(3)

All Mé-type shock waves with negative anisotropy, and especially the Ms -

type shock waves, are associated with a shock wave branch which begins at h = O,
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oy g oyl 2
= > = -
| n02 0, Y As/so cos 90, b P s
through a minimum in h, and reaches h = 0, | = O. In the case where §o > §O T’
- k]
this branch is located in the h, T-plane to the right of the tangent at h = O,

etc., on the edge of the Mf region, passes

N = 0. Upon passage to the limit h -+ o, ﬁ -+ 0, we obtain the compressive counter-
part to the expansive shock waves described in conjunction with the Mf-type
shock waves under positive anisotropy, which reach an infinite velocity where

h =+ 0O, ﬁ -+ 0. The same formulas apply in both cases. In both instances, the
significant effect of such a shock wave in the vicinity of h = O is the iso-
tropization of the plasma and a pressure change of Y = - 2/3 As/s, cos® 8y > 0.
In the case of excessively small values of IAs' near h = O, ﬁ = 0, the formulas
used here will lose their validity again as isotropy is established in the rear
of the shock wave.

(1) (2)

We now turn to the Ms and Ms ~type shock waves which transform into

the corresponding types of Bazer and Ericson [1958] when As ® O. In the case

= 2
of a triplet of values As, so, Go, which corresponds to an Ms(l)—type or Ms( )—

type shock wave, there are always two shock wave solutions which make Hy 1
?

smaller than Hy o > O without density change. This is the significant difference
! (3)

between these and the MS -type shock wave. In the case of negative anisotropy

and S the shock wave solutions are not subject to density change and

2 =
o~ o,1
are located on a curve which would always be closed if we incorporate the curve
segments where Y < -1 and T < -1. This curve contains a shock wave solution

that corresponds to a maximum |h| or minimum h = h in® When this shock wave

mi
2

is compressive, we call it an Mé( )—type shock wave along with all other Ms-

type shock waves associated with the same triplet of values As, gO’ 60. If

this shock wave is expansive, the shock waves are called M (l)—type shock waves.

s
The boundary between the two types is represented by dot-dashed curves for

(2)

each 90 in Figure 6. It is seen that Ms -type shock waves cannot exist abo?i__
go = 1l. Moreover, Ms(z)-type shock waves cannot exist above 50.8° = arc sin V3/5.
Figures 10 through 16 contain the step functions of Ms(l)_type shock waves with
§o = 1.0, 90 =(g§° as well as P,/P,y = 0.6, 1.0 and 11.0. Figures 17 through 23
contain two Ms -type shock waves with EO = 0.5, 90 = 20°, H‘/P¢ = 1000.0

and 1.0. It was already mentioned at the end of the description of the MS(B)_
type shock waves that, in the presence of negative anisotropy and-§O = §O,T
there is always one shock wave branch which is located in the h, T-plane to the
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right of the tangent placed through the zero point, reaches only small values

of h, and contains a shock wave of infinite velocity when h = O, ﬁ = 0. This
branch can merge into the closed curve when go < gO,T' En the case_of positive
anisotropy, and if we were to disregard the inequalities T 2 -1 and Y 2 .1, but
took into consideration that (h - ﬁ gin eo)/ﬂ 2 0, we would obtain a shock wave
curve which starts at h = - 3/5 ‘As sin O, and 7 =(s/105,)(6 - 34s sin0_ - 2 cos? @)
intersects the h-axis, passes through B = - 3/5 4s sin 6,, 7= - 3/54s

and terminates at the T-axis. Part of this curve is cut off as a result of the

conditions Y 2 -1, ﬁ 2 _1, which can be seen from Figures 10 and 17.

(1)

Examination of the -[ﬁ] curves in Figure 16 will show that the MS ~type
shock wave with 60 = L5°, go = 1.0 and P,/P, = 11.0 is still permissible even
far into the expansive region. The region of the Mé(l)-type shock wave with
negative anisotropy P,/P, = 0.6 is constrained in comparison to the isotropic
case. Almost all anisotropic shock wave solutions are permissible in the case

where 5, = 0.5, 8, = 20° R, /P, = 1000.

Eq. 39 in addition to Figures 15 and 22 show that sign [uy] = sign h Z}S?
applies. Consequently, B determines the sign of the impulse change in the y-
direction which the plasma undergoes upon passing through the shock wave region.

The forces acting in the y-direction are the y-component of the current force

j x H and the y-component of -V * P.

3.3.4. Shock Waves with Very Great and Very
Small Valuesm9£7§o

We shall now discuss briefly the shock waves with greatly predominant

thermal energy (§O > 1) and greatly predominant magnetic field energy (go <1).

In the case where §O > 1, the instability limits have the result that
Py /P, is located within an interval about 1 which progressively narrow down
Apart from fine details the dynamic behavior will be determined only by the
particle pressure components and velocities. Consequently, we can expect that
the dependence of f(and of the velocities V and V of ﬁ that are referred

n,0 n,l
s

4 b
to the sonic velocity ay = (; R/}ofé ) on S will decrease progressively as

§O + », (Here we must usually consider the sonic velocity a0 as being a
numerical magnitude which describes the thermic velocities). In the case of
a large value of §O, these functions will differ only little from the corre-
sponding functions for shock waves in gas dynamics where v = 5/3.
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We shall note down these functions §(ﬁ), V. /a , V _/a_ for shock waves in gas
n,0' o n,1” "1

dynamics using B, /Py = 1.

Vi)=5 2

Y@= 3 51 (60a)
IR

Mo _ 1+7

ol 1-17/3 (60b)
1

Mg 1 (60c) /158
@30

o;=5 B o al= s.bo. (60a)

I '

The behavior of a residual magnetic field will then be dominated primarily
by the particles without having any appreciable reaction on particle

motion.

Of course, as far as any measurements are concerned, the magnetic field is
still an important indicator for the behavior of matter. Therefore, we shall

consider briefly the behavior of the shock wave functions in their dependence

o* In that case we have only Mf(l), Ms(l) and

-types of shock waves. In the case where |b 1< 3, the shock wave curves

on h under large values of s
v (3
s - — —
in the h, T-plane are located in the vicinity of T = h/sin 60 and T = O.

One shock wave curve starts out from h = 3 sin GO, ﬁ = 3, proceeds along the

straight line ﬁ = h/sin 90, and reaches a sharp minimum in h near negative

h(As < 0) or positive h(As > 0) depending on the sign As.

In the case of negative anisotropy, the curve proceeds from h = O,
ﬁ = 0, with a small value of |ﬁ| € 1 and a shallow decline toward positive
values of h. Moreover, another curve of slightly expansive shock waves pro-
ceeds with a weakly rising slope from the direction of negative h-values to a
point where h = h02’ ﬁ = O, passes through a weak maximum, turns negative again

with a shallow negative slope at point h = h performs a downward bend, and

03°_
proceeds approximately along the straight line T = h/sin GO. This was the Ms(l) /159
case. In the MS(B) case, the maximum is still reached under very slight

expansion.

In the case of positive anisotropy, there is also a curve which proceeds

from negative n-values at a slight rise and slightly negative ﬁ, becomes positive
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at h = hoz, reaches a weak maximum, passes h = O, 7] = O and a maximum in h, and

turns downward again alongside ﬁ = h/sin 90.

It is important in the case of 5. > 1 that fairly strong compressive shock

waves are located near ﬁ = h/sin Go wgere h > 0. At best the Ms-type shock
waves will reach very weakly positive T-values so that they will never be slow
in the sense of Vh’l < bn,l in the presence of negative, fairly strong aniso-
tropy. Large values of | hjcan be achieved only under very unrealistic stipu-

lations with respect to the H-theorem in the inequality (33g).

The case where gO » 1 is interesting for still another reason. We had shown
with the aid of Egq. (46) that, within the limits imposed by fire hose instability
and reflection instability, ﬁ = +3 can be reached only where h = 3 sin 90. This
was one of the auxiliary theorems for the proof that T = +3 can be the maximum
density change. If we 1limit the stability requirement and if the values of go
are large, density changes with f] > 3 are possible as well. For instance, in
the case where 90 = 90° and As > O, this will be possible when ;O > 4L, The
absolute minimum of As is 110, while the limit of fire hose instability is
located near 5/3. In any event, the instability will be very great. However,
it is still possible that the characteristic length LF 2 Vn,O/fci which is
associated with the fire hose instability will satisfy the condition LS/LF €1,
where we made use of the fact that the fire hose instability is stabilized below
the ion gyro frequency fci as a result of the effect of the finite gyro radius, 1}60
and that the growth constant of instability is < fci' The lower boundary of LF
depends only on Iﬂ] . Using the value acquired from the measurements of
Heppner et al. [1967] and Wolfe et al. [1968], Isgw 1000 VA/ W s and extra-
polating the validity range toward large values of 50, we will find

Lg/Lp S 1000(Vy o M (Wei+ Vn,o) = 1000-Vp/Vyy o - When the Alfvén Mach
number is very great, LS/LF can become very small compared to one., In that
case the plasma will be quasistable for the purpose of the theory implemented
here, unless other types of instabilities become effective., It is admitted
that the expressions LF and Ls cited above are very rough approximations. How-

ever, they are used merely as illustrations for the physical concept that the

instability limits are not absolute boundaries.
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At the end of this section we shall discuss briefly the case where go < 1.

Since this will also imply As € 1, we can see immediately from Eq. (34) that

go and As can be disregarded, except for a small region about h = O. This will

also apply to Egs.(36) through (39), if we merely keep in mind that

 _ P -7
5. Y = ST
5/, Hs for

The disappearance of S and As from Eqs. (34) through (39) is not surprising

0

since only the magnetic field H, and the density Po have a decisive effect on

o
the step functions if EO € 1. The shock wave solutions in the vicinity of h = O
can be acquired easily from the discussions in Paras. 3.3.2. and 3.3.3. In
particular, it applies again that the shock waves with infinite velocities but

finite Y and [uy] = 0 as well as [un] = O are possible where h = 0, T = O.

Consequently, the step functions for go <€ 1 are independent of As, except
in close proximity to h = 0. Yet the anisotropy can have a strong effect in
that, based on the classical entropy condition and via the H-theorem according

to inequation (33g), forbidden shock waves can be permissible and vice versa.

The discussion in this section has shown that the effect of anisotropy is

generally small for both, large and small values of s In fact, the effect of

o*
anisotropy is greatest in the vicinity of 50 = 1 in the As, go—plane.

3.3.5. Some_Supplementary Considerations on

the Effect of Anisotropy

We have already seen the great effect of anisotropy on the shock wave
functions in many instances in Chapter 3. A discussion of the behavior of these
functions under constant eO and EO and variable As would be of additional
interest. However, we would again have to make a distinction between a large
number of cases in order to make the discussion complete. Therefore, we shall

be content with some special cases.

First, we consider %—- under constant ﬁ:

As
farz’
Q4| __ _Tisik
DAS| .- 27
1 ’é]IAs
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Moreover, the following relationship is obtained with Eq. (3%4):

k)
OB | 2,0 2 - 7 colo, -8 -4 B (61)
Qasly 5T (fga+b) 2%
Tl : 2. L/As
EQL - 0, applies when (62) /162
d4s] 5
2
2 corto, —Rr—2h 22 =)

Am &,

is satisfied. Eq. (62) describes a hyperbola in the h, f|-plane whose vertices

are located near

2 1
@4 06 _ 1 udo
R=- 25 e 1w

This hyperbola is very important. For, if we have found a curve point for a
certain triplet of values 90, go, As which satisfies Egs. (34) and (62) equally
well, this curve point will satisfy Eq. (34) under any value of As with con-
stant 90 and go. This is seen most easily from Eq. (34). PFigures 10 and 17
contain several such points. First, the already known point h = O, ﬁ = 0 and
the point h = 3 sin 90, ﬁ = 3 which corresponds to the case of the infinitely
strong shock wave, are solutions of Eq. (34), independently of As and gO' In
Figure 10 another point which is independent of anisotropy is located near

h = -2 sin 60, N =0, or h = -1.41k, ﬁ = O. If the curves were not limited

by the condition that Y = -1, we would have still another common point near

h a3 0.55, ﬁ:y -0.9. Still another point which is not dependent on anisotropy

is located near h =~ 0.17 and ﬁ;y -0.36 in Figure 17.

Now, the question arises immediately whether there are also some compres- /163
sive Mf type shock wave solutions with O < ﬁ < 3 where, for given ﬁ, h is
not dependent on As. It is easily seen from the general profile of TN(h) where
As = O and from the profile of the hyperbola according to Eq. (62) that, in the

region where h 2 0, 3 > ﬁ > 0, a point in the h, T-plane which is independent
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of anisotropy could never be possible. This circumstance, and the rise gg}

- As
at h = 3 sin 90, N = 3, finally yield the following important statement.
Let ﬁl(h) and ﬁz(h) be the compressive M -type shock waves in the h, ﬁ-plane

that are associated with the same 90 and S, but with different values of As,

o -
these being (As)1 and (As)z. In that case, ﬂl and ﬂz will proceed so that the

two curves do not intersect in the region where h 2 0 and O < ﬁ < 3, and that

ﬁz with (As)2 > (As)1 is located near h = 3 sin 6, ﬁ = 3 on the way toward
lower values of T, to the right of ﬂl. Except for negative anggotropy, small
angles 90 and not excessively great values of ;o, points with 5E-= 0O will not
occur. In that case the above statement can be summarized into the inequality

cEd

o
DAs >

where A2 0Oand 0<7< 3

This characteristic can be seen in Figures 10 and 17. As As increases, the h

associated with a constant ﬂ continues to grow.

The relationships for the other shock wave functions are not as simple as
they are for ﬁ(h; go, As, 90). It is seen from these examples that the above

statement on ﬁ(h) is also valid for Y, V and V provided that the shock

n,0 n,1’
waves are sufficiently strong.

L, Conclusion

The shock wave relationships for an anisotropic plasma with magnetic field
were derived for the nonrelativistic case in Chapters 2 and 3, and discussed in
great detail. For this purpose, we started out by deriving the conservation
equations via several stages from the basic equations by Klimontovich and Dupree.
Some weak assumptions were made that establish the applicability range of the

calculations within very wide limits.

Subsequently, we used the theories on the structure of shock waves in an
anisotropic plasma, observations acquired from the earth's shock wave, and other
physical considerations for an attempt to justify the assumption of the existence
of an isotropic plasma in the rear of the shock wave region. This included

considerations of a more general nature on the generalization of the classical
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entropy condition. Finally, we derived the shock wave relations and discussed
their implications under a variety of mathematical and physical aspects. We
emphasize again, that it is not possible to make any quantitative statement

as to the existence of the shock wave solutions which were discussed.

Also, in the case of the classical magnetohydrodynamic shock waves the
investigations of structure and stability sometimes took place considerably

later than the investigations of the shock wave relations.

We shall now enumerate the most important results. We shall start with the
commonalities existing between the classical hydromagnetic shock waves and the

solutions discussed here.

1. The density cannot increase by more than a factor of four during a shock wave

transition (cf. Para. 3.3.k4.).

2. The magnetic field can change only by a finite quantity during a shock wave 1}65

transition.

T
3. Except for the special case of the Alfvén shock waves where Qh"j%)/?a=(RL—RJ/¥%
and [uy] £ 0, the transverse portions of the magnetic field in front of the

shock wave and in its rear are collinear, meaning that the plane formed

of the magnetic field vectors in front of the shock wave region and in its
rear is oriented perpendicularly to the shock front. The normal

component of the magnetic field does not change.

Apart from the fact that the jump functions are sometimes changed con-
siderably as a result of anisotropy, we can next enumerate some especially

important points.

L, The effect of anisotropy is strongest in the case of a plasma state in
front of the shock wave where the magnetic energy density and the thermal

energy density of the plasma have approximately the same order of magnitude.

5. When there is negative anisotropy of adequate strength, that is, where

As < (AS)CI‘it'

as compared to the thermal energy density of the plasma, there will be no

accompanied by a low energy density of the magnetic field

compressive shock waves whose magnetic field decreases by a major amount

(meaning that h > -1/4 applies where ﬁ > 0).
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6. The generalized entropy condition may also allow expansive shock waves,
and this not only when the collisionless plasma in front of the shock wave

is anisotropic.

7 A shock wave type is possible in the presence of anisotropy whose velocity
can grow beyond all bounds, while the density jump, magnetic field jump,
and pressure jump tend toward zero. This shock wave type is eXpansive
under positive anisotropy and compressive under negative anisotropy (this
type corresponds to a small neighborhood of h = 0, ﬁ = 0). Its effect

is primarily one of anisotropy destruction.

8. In the case of compressive shock waves associated with an increase of the
magnetic field transverse component (meaning that Hy,l > Hy,O or that
h > 0), this increase cannot drop below a certain value if the anisotropy
is positive. In the case of negative anisotropy, compressive shock waves

with increasing transverse component of the magnetic field cannot exist

below a minimum pressure jump which differs from zero.

At the present time, it is difficult to effect a comparison of the calcula-
tions with experimental results. This would require simultaneously acquired
magnetic field and plasma measurements that cover all the important particle
types and have such a high resolution that the anisotropy can be determined.

The following Table 6 lists all the authors who have reported on plasma and

magnetic field measurements acquired from the same shock wave transition in

solar wind.
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TABIE 6.

Authors and year Type of shock wave Measured magnitudes
of publication

Sonett, et al., Interplanetary shock wave Magnetic field, ion energy

[1964] spectra without directional
resolution.
Van Allen and Ness, Magnetic field /167
[1967]
Sugiura et al., Interplanetary shock wave Numerical ion density
[1968] and mass velocities are
(Original measure- cited in the paper by
ments by Lazarus Sugiura, et al.
and Binsack,
[1968]
Ness et al., Magnetic field
[1966]
E h!
Wolfe et al., arth's shock wave Ion and electron measure-

[1968] ments with approximate
citation of the anisotropy
for the ions.

Moreover, there is a large number of observation data where, unfortunately,
the magnetic field measurements and plasma measurements on both sides of the
earth's shock wave were not acquired simultaneously. Finally, the paper by
Gosling et al. [19681, contains plasma observations of interplanetary shock
waves. However, even the measurements cited in Table 6 cannot be used for test-
ing the shock wave relations. In the first cited instance, the measurements lack
the directional resolution and the measurements of the electron distribution which
should play a significant role, according to the observations by Montgomery
[1958]. 1In the second instance, the complete measurements acquired by Lazarus
and Binsack were not available when this thesis was being completed. The third
cited case is the most advantageous under the circumstances. However, the
condition that LS/L € 1 is not satisfied for the earth's shock wave. Moreover,
the error limits are very great, especially for the temperature measurements
behind the shock wave, but also for the derivation of the ion pressure aniso- /168
tropy in front of the earth's shock wave. In addition, there is a lack of
information on the electron pressure anisotropy which is due to the great
difficulties involved in measuring electron spectra in solar wind. It is true
that we can make suitable stipulations on the electron pressure anisotropy in

order to effect a comparison between theory and experiment which will yield
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better results than the classical theory on MHD shock waves. However, this is
more due to the fact that we have an additional parameter available in the
form of As which can be varied within the measuring Iimits in order to adapt
the theory to the experiment. Therefbre, the mmmerical computations associated

with this comparison shall not be cited.

We conclude this discussion with the statement that we must wait for more
exact plasma and magnetic field measurements before we can investigate the

agreement between theory and experiment.
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